Skip to main content
Log in

Extended scintillation phase gradient autofocus in future spaceborne P-band SAR mission

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A future spaceborne P-band synthetic aperture radar (SAR) working system will be inevitably influenced by ionospheric scintillation, which tends to cause azimuth decorrelation and azimuth-imaging degradation. The scintillation phase error (SPE) history spatially varies by 2D scenes, and this leads to the complexity of SPE estimation and compensation. In this paper, to address this problem, an approach based on the extended scintillation phase gradient autofocus (ESPGA) technique has been proposed. ESPGA is composed of three modules: local estimation, overall estimation, and correction. First, it employs the block PGA (BPGA) to estimate SPE associated with the local block. Second, by taking advantage of information redundancy of SPE estimates, azimuth splicing and range interpolation are applied to estimate the overall SPE distribution across the whole scene. Then, the estimation result corresponding to the overall SPE is considered to compensate the spatial-variant SPE and mitigate scintillation impacts on the spaceborne SAR images. Finally, a processing experiment based on a simulated image derived from an airborne P-band SAR real scene is conducted to demonstrate the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rino C L. The Theory of Scintillation With Applications in Remote Sensing. New York: Wiley, 2011

    Book  Google Scholar 

  2. Meyer F J, Bamler R, Jakowski N, et al. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions. IEEE Geosci Remote Sens Lett, 2006, 3: 560–564

    Article  Google Scholar 

  3. Xu Z W, Wu J, Wu Z S. A survey of ionospheric effects on space-based radar. Waves Random Media, 2004, 14: 189–273

    Article  Google Scholar 

  4. Belcher D P. Theoretical limits on SAR imposed by the ionosphere. IET Radar Sonar Navigation, 2008, 2: 435–448

    Article  Google Scholar 

  5. Quegan S, Lamont J. Ionospheric and tropospheric effects on synthetic aperture radar performance. Int J Remote Sens, 1986, 7: 525–539

    Article  Google Scholar 

  6. Rino C L. A power law phase screen model for ionospheric scintillation: 1. weak scatter. Radio Sci, 1979, 14: 1135–1145

    Article  Google Scholar 

  7. Rino C L. A power law phase screen model for ionospheric scintillation: 2. strong scatter. Radio Sci, 1979, 14: 1147–1155

    Article  Google Scholar 

  8. Yeh K C, Liu C-H. Radio wave scintillations in the ionosphere. Proc IEEE, 1982, 70: 324–360

    Article  Google Scholar 

  9. Arcioni M, Bensi P, Davidson M W J, et al. ESA’S BIOMASS mission candidate system and payload overview. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, 2012. 5530–5533

  10. Minh D H T, Tebaldini S, Rocca F, et al. Capabilities of BIOMASS tomography for investigating tropical forests. IEEE Trans Geosci Remote Sens, 2015, 53: 965–975

    Article  Google Scholar 

  11. Wang C, Chen L, Liu L. A new analytical model to study the ionospheric effects on VHF/UHF wideband SAR imaging. IEEE Trans Geosci Remote Sens, 2017, 55: 4545–4557

    Article  Google Scholar 

  12. Ishimaru A, Kuga Y, Liu J, et al. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz. Radio Sci, 1999, 34: 257–268

    Article  Google Scholar 

  13. Xu Z-W, Wu J, Wu Z-S. Potential effects of the ionosphere on space-based SAR imaging. IEEE Trans Antenn Propagat, 2008, 56: 1968–1975

    Article  Google Scholar 

  14. Wang C, Zhang M, Xu Z W, et al. Effects of anisotropic ionospheric irregularities on space-borne SAR imaging. IEEE Trans Antenn Propagat, 2014, 62: 4664–4673

    Article  MATH  Google Scholar 

  15. Li Y H, Hu C, Dong X C, et al. Impacts of ionospheric scintillation on geosynchronous SAR focusing: preliminary experiments and analysis. Sci China Inf Sci, 2015, 58: 109301

    Article  Google Scholar 

  16. Hu C, Li Y H, Dong X C, et al. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Trans Geosci Remote Sens, 2017, 55: 159–172

    Article  Google Scholar 

  17. Ji Y F, Zhang Q L, Zhang Y S, et al. L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities. Sci China Inf Sci, 2017, 60: 060308

    Article  Google Scholar 

  18. Meyer F J, Chotoo K, Chotoo S D, et al. The influence of equatorial scintillation on L-band SAR image quality and phase. IEEE Trans Geosci Remote Sens, 2016, 54: 869–880

    Article  Google Scholar 

  19. Ji Y F, Zhang Y S, Zhang Q L, et al. Comments on “the influence of equatorial scintillation on L-band SAR image quality and phase”. IEEE Trans Geosci Remote Sens, 2019, 57: 7300–7301

    Article  Google Scholar 

  20. Ji Y F, Zhang Y S, Dong Z, et al. Impacts of ionospheric irregularities on L-band geosynchronous synthetic aperture radar. IEEE Trans Geosci Remote Sens, 2020, 58: 3941–3954

    Article  Google Scholar 

  21. Ji Y F, Dong Z, Zhang Y S, et al. Geosynchronous SAR raw data simulator in presence of ionospheric scintillation using reverse backprojection. Electron Lett, 2020, 56: 512–514

    Article  Google Scholar 

  22. Jakowski N, Mayer C, Hoque M M, et al. Total electron content models and their use in ionosphere monitoring. Radio Sci, 2011, 46: RS0D18

    Article  Google Scholar 

  23. Jehle M, Frey O, Small D, et al. Measurement of ionospheric TEC in spaceborne SAR data. IEEE Trans Geosci Remote Sens, 2010, 48: 2460–2468

    Article  Google Scholar 

  24. Meyer F J, Nicoll J B. Prediction, detection, and correction of faraday rotation in full-polarimetric L-band SAR data. IEEE Trans Geosci Remote Sens, 2008, 46: 3076–3086

    Article  Google Scholar 

  25. Ji Y F, Zhang Y S, Zhang Q L, et al. Retrieval of ionospheric faraday rotation angle in low-frequency polarimetric SAR data. IEEE Access, 2019, 7: 3181–3193

    Article  Google Scholar 

  26. Gomba G, Parizzi A, de Zan F, et al. Toward operational compensation of ionospheric effects in SAR interferograms: the split-spectrum method. IEEE Trans Geosci Remote Sens, 2016, 54: 1446–1461

    Article  Google Scholar 

  27. Rogers N C, Quegan S, Kim J S, et al. Impacts of ionospheric scintillation on the BIOMASS P-band satellite SAR. IEEE Trans Geosci Remote Sens, 2014, 52: 1856–1868

    Article  Google Scholar 

  28. Kim J S, Papathanassiou K P, Scheiber R, et al. Correcting distortion of polarimetric SAR data induced by ionospheric scintillation. IEEE Trans Geosci Remote Sens, 2015, 53: 6319–6335

    Article  Google Scholar 

  29. Wang R, Hu C, Li Y H, et al. Joint amplitude-phase compensation for ionospheric scintillation in GEO SAR imaging. IEEE Trans Geosci Remote Sens, 2017, 55: 3454–3465

    Article  Google Scholar 

  30. Yu L, Zhang Y S, Zhang Q L, et al. Minimum-entropy autofocusing based on Re-PSO for ionospheric scintillation mitigation in P-band SAR imaging. IEEE Access, 2019, 7: 84580–84590

    Article  Google Scholar 

  31. Quegan S, Green J J, Chen J. Simulation of ionospheric disturbances and impact assessment on biomass product quality. In: ESA/ESTEC Contract 21760/08/NL/CT, Noordwijk, 2009

  32. Quegan S, Green J, Schneider R Z. Quantifying and correcting ionospheric effects on P-band SAR images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2008. 541–544

  33. Li Z, Quegan S, Chen J, et al. Performance analysis of phase gradient autofocus for compensating ionospheric phase scintillation in BIOMASS P-band SAR Data. IEEE Geosci Remote Sens Lett, 2015, 12: 1367–1371

    Article  Google Scholar 

  34. Knepp D L. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proc IEEE, 1983, 71: 722–737

    Article  Google Scholar 

  35. Knepp D L. Multiple phase screen calculation of two-way spherical wave propagation in the ionosphere. Radio Sci, 2016, 51: 259–270

    Article  Google Scholar 

  36. Carrano C S, Groves K M, Caton R G. Simulating the impacts of ionospheric scintillation on L band SAR image formation. Radio Sci, 2012, 47: RS0L20

    Article  Google Scholar 

  37. Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Boston: Artech House, 2005

    Google Scholar 

  38. Belcher D P, Mannix C R, Cannon P S. Measurement of the ionospheric scintillation parameter CkL from SAR images of clutter. IEEE Trans Geosci Remote Sens, 2017, 55: 5937–5943

    Article  Google Scholar 

  39. Mannix C R, Belcher D P, Cannon P S. Measurement of ionospheric scintillation parameters from SAR images using corner reflectors. IEEE Trans Geosci Remote Sens, 2017, 55: 6695–6702

    Article  Google Scholar 

  40. Belcher D P, Cannon P S. Amplitude scintillation effects on SAR. IET Radar Sonar Navigation, 2014, 8: 658–666

    Article  Google Scholar 

  41. Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus: a robust tool for high resolution SAR phase correction. IEEE Trans Aerosp Electron Syst, 1994, 30: 827–835

    Article  Google Scholar 

  42. Chan H L, Yeo T S. Noniterative quality phase-gradient autofocus (QPGA) algorithm for spotlight SAR imagery. IEEE Trans Geosci Remote Sens, 1998, 36: 1531–1539

    Article  Google Scholar 

  43. Ye W, Yeo T S, Bao Z. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus. IEEE Trans Geosci Remote Sens, 1999, 37: 2487–2494

    Article  Google Scholar 

  44. de Macedo K A C, Scheiber R, Moreira A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry. IEEE Trans Geosci Remote Sens, 2008, 46: 3151–3162

    Article  Google Scholar 

  45. Zhang L, Qiao Z, Xing M D, et al. A robust motion compensation approach for UAV SAR imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 3202–3218

    Article  Google Scholar 

  46. Zhang L, Sheng J, Xing M D, et al. Wavenumber-domain autofocusing for highly squinted UAV SAR imagery. IEEE Sens J, 2012, 12: 1574–1588

    Article  Google Scholar 

  47. Li J C, Chen J, Wang P B, et al. A coarse-to-fine autofocus approach for very high-resolution airborne stripmap SAR imagery. IEEE Trans Geosci Remote Sens, 2018, 56: 3814–3829

    Article  Google Scholar 

  48. Shao S, Zhang L, Liu H W, et al. Spatial-variant contrast maximization autofocus algorithm for ISAR imaging of maneuvering targets. Sci China Inf Sci, 2019, 62: 040303

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 41271459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Dong, Z., Zhang, Y. et al. Extended scintillation phase gradient autofocus in future spaceborne P-band SAR mission. Sci. China Inf. Sci. 64, 212303 (2021). https://doi.org/10.1007/s11432-019-2797-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2797-4

Keywords

Navigation