Landing site topographic mapping and rover localization for Chang’e-4 mission


This paper presents the techniques and results of landing-site topographic mapping and rover localization using orbital, descent and rover images in the Chang’e-4 mission. High-resolution maps of the landing site are generated from orbital and descent images. Local digital elevation models and digital orthophoto maps with 0.02 m resolution are generated at each waypoint. The location of the lander is determined as (177.588° E, 45.457° S) using festure-matching techniques. The cross-site visual localization method is routinely used to localize the rover at each waypoint to reduce error accumulation from wheel slippage and IMU drift in dead reckoning. After the first five lunar days, the rover travels 186.66 m from the lander, according to the cross-site visual localization. The developed methods and results have been directly utilized to support the mission’s operations. The maps and localization information are also valuable for supporting multiple scientific explorations of the landing site.

This is a preview of subscription content, access via your institution.


  1. 1

    Wu W R, Li C L, Zuo W, et al. Lunar farside to be explored by Chang’e-4. Nat Geosci, 2019, 12: 222–223

    Article  Google Scholar 

  2. 2

    Petro N E, Pieters C M. Surviving the heavy bombardment: ancient material at the surface of South Pole-Aitken basin. J Geophys Res, 2004, 109: 4

    Article  Google Scholar 

  3. 3

    Melosh H J, Kendall J, Horgan B, et al. South Pole-Aitken basin ejecta reveal the Moon’s upper mantle. Geology, 2017, 45: 1063–1066

    Article  Google Scholar 

  4. 4

    Li C L, Liu D W, Liu B, et al. Chang’e-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature, 2019, 569: 378–382

    Article  Google Scholar 

  5. 5

    Hu X, Ma P, Yang Y, et al. Mineral abundances inferred from in-situ reflectance measurements of Chang’e-4 landing site in South Pole-Aitken basin. Geophys Res Lett, 2019, 46: 9439–9447

    Article  Google Scholar 

  6. 6

    Gou S, Di K, Yue Z, et al. Lunar deep materials observed by Chang’e-4 rover. Earth Planet Sci Lett, 2019, 528: 115829

    Article  Google Scholar 

  7. 7

    Li R X, Squyres S W, Arvidson R E, et al. Initial results of rover localization and topographic mapping for the 2003 Mars Exploration Rover mission. Photogramm Eng Remote Sens, 2005, 71: 1129–1142

    Article  Google Scholar 

  8. 8

    Arvidson R E, Anderson R, Bartlett P, et al. Localization and physical properties experiments conducted by spirit at Gusev Crater. Science, 2004, 305: 821–824

    Article  Google Scholar 

  9. 9

    Zakrajsek J, McKissock D, Woytach J, et al. Exploration rover concepts and development challenges. In: Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, 2005. 1–23

  10. 10

    Golombek M P, Anderson R C, Barnes J R, et al. Overview of the Mars Pathfinder Mission: launch through landing, surface operations, data sets, and science results. J Geophys Res, 1999, 104: 8523–8553

    Article  Google Scholar 

  11. 11

    Li R X, Archinal B A, Arvidson R E, et al. Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars. J Geophys Res, 2006, 111: 6

    Article  Google Scholar 

  12. 12

    Li R X, Arvidson R E, Di K C, et al. Opportunity rover localization and topographic mapping at the landing site of Meridiani Planum, Mars. J Geophys Res, 2007, 112: 90

    Google Scholar 

  13. 13

    Di K C, Xu F L, Wang J, et al. Photogrammetric processing of rover imagery of the 2003 Mars Exploration Rover mission. ISPRS J Photogrammetry Remote Sens, 2008, 63: 181–201

    Article  Google Scholar 

  14. 14

    Liu Z Q, Di K C, Peng M, et al. High precision landing site mapping and rover localization for Chang’e-3 mission. Sci China Phys Mech Astron, 2015, 58: 019601

    Google Scholar 

  15. 15

    NASA. Where is Curiosity? 2019.

  16. 16

    Cheng Y, Maimone M W, Matthies L. Visual odometry on the Mars Exploration Rovers-a tool to ensure accurate driving and science imaging. IEEE Robot Automat Mag, 2006, 13: 54–62

    Article  Google Scholar 

  17. 17

    Maimone M, Cheng Y, Matthies L. Two years of visual odometry on the Mars Exploration Rovers. J Field Robotics, 2007, 24: 169–186

    Article  Google Scholar 

  18. 18

    Di K C, Liu Z Q, Yue Z Y. Mars rover localization based on feature matching between ground and orbital imagery. Photogramm Eng Remote Sens, 2011, 77: 781–791

    Article  Google Scholar 

  19. 19

    Barker M K, Mazarico E, Neumann G A, et al. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera. Icarus, 2016, 273: 346–355

    Article  Google Scholar 

  20. 20

    Wan W, Liu Z, Di K, et al. A cross-site visual localization method for Yutu rover. In: Proceedings of ISPRS 2014 Technical Commission IV Symposium, Suzhou, 2014. 279–284

  21. 21

    NAIF. Lunar reconnaissance orbiter camera (LROC) instrument kernel v18. 2014.

  22. 22

    Henriksen M R, Manheim M R, Speyerer E J, et al. Extracting accurate and precise topography from LROC narrow angle camera stereo observations. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2016, XLI-B4: 397–403

    Article  Google Scholar 

  23. 23

    Di K C, Xu B, Liu B, et al. Geopositioning precision analysis of multiple image triangulation using LRO NAC lunar images. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2016, XLI-B4: 369–374

    Article  Google Scholar 

  24. 24

    Liu B, Xu B, Di K C, et al. A solution to low RFM fitting precision of planetary orbiter images caused by exposure time changing. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2016, XLI-B4: 441–448

    Article  Google Scholar 

  25. 25

    Liu B, Jia M N, Di K N, et al. Geopositioning precision analysis of multiple image triangulation using LROC NAC lunar images. Planet Space Sci, 2018, 162: 20–30

    Article  Google Scholar 

  26. 26

    Peng M, Wan W H, Wu K, et al. Topographic mapping capbility analysis of Chang’e-3 Navcam stereo images and 3D terrain reconstruction for mission operations (in Chinese). J Remote Sens, 2014, 18: 995–1002

    Google Scholar 

  27. 27

    Di K C, Liu Z Q, Liu B, et al. Chang’e-4 lander localization based on multi-source data. J Remote Sens, 2019, 23: 177–180

    Google Scholar 

  28. 28

    CLEP. Rover and lander of Chang’e-4 have finished the work of the first five lunar days. 2019.

  29. 29

    Wan W H. Theory and Methods of Stereo Vision Based Autonomous Rover Localization in Deep Space Exploration. Dissertation for Ph.D. Degree. Beijing: Chinese Academy of Sciences, 2012

    Google Scholar 

  30. 30

    Jia Y, Zou Y, Ping J, et al. The scientific objectives and payloads of Chang’e-4 mission. Planet Space Sci, 2018, 162: 207–215

    Article  Google Scholar 

  31. 31

    Wieczorek M A, Jolliff B, Khan A, et al. The constitution and structure of the lunar interior. Rev Mineral Geochem, 2006, 60: 221–364

    Article  Google Scholar 

  32. 32

    He Z P, Wang B Y, Lv G, et al. Visible and near-infrared imaging spectrometer and its preliminary results from the Chang’e 3 project. Rev Sci Instruments, 2014, 85: 083104

    Article  Google Scholar 

Download references


This work was supported in part by Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB11), National Natural Science Foundation of China (Grant Nos. 41671458, 41590851, 41941003). We thank the Lunar and Deep Space Exploration Science Applications Center of the National Astronomical Observatory for providing the Pancam images and VNIS data.

Author information



Corresponding author

Correspondence to Kaichang Di.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Di, K., Li, J. et al. Landing site topographic mapping and rover localization for Chang’e-4 mission. Sci. China Inf. Sci. 63, 140901 (2020).

Download citation


  • Chang’e-4
  • Yutu-2 rover
  • landing site mapping
  • rover localization
  • descent images
  • rover images