Skip to main content
Log in

Robust adaptive control of hypersonic flight vehicle with asymmetric AOA constraint

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the state-constrained controller design of a hypersonic flight vehicle (HFV) based on an asymmetric barrier Lyapunov function (ABLF). The robust adaptive back-stepping controller with integral terms is applied for the HFV longitudinal dynamics. Considering the asymmetric angle of attack (AOA) constraint caused by the unique structure and scramjet, the controller is modified by constructing an ABLF, where the asymmetric constraint on AOA tracking error is introduced. Combined with the constraint on virtual control, the AOA is restricted to a predefined asymmetric interval. The system stability and the AOA constraint are guaranteed via Lyapunov analysis. Simulation results verify that the AOA can be kept in the given asymmetric interval while the altitude reference signal is tracked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigthorsson D O, Jankovsky P, Serrani A, et al. Robust linear output feedback control of an airbreathing hypersonic vehicle. J Guidance Control Dyn, 2008, 31: 1052–1066

    Article  Google Scholar 

  2. Hughes H, Wu F. H-infinity LPV state feedback control for flexible hypersonic vehicle longitudinal dynamics. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, 2010. 8281

  3. Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guidance Control Dyn, 2004, 27: 829–838

    Article  Google Scholar 

  4. Xu B, Wang X, Shi Z K. Robust adaptive neural control of nonminimum phase hypersonic vehicle model. IEEE Trans Syst Man Cybern Syst, 2019. doi: https://doi.org/10.1109/TSMC.2019.2894916

  5. Chen M, Ren B B, Wu Q X, et al. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci China Inf Sci, 2015, 58: 070202

    MathSciNet  Google Scholar 

  6. Gao D X, Sun Z Q. Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci China Inf Sci, 2011, 54: 521–528

    Article  MathSciNet  Google Scholar 

  7. Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci, 2015, 58: 070201

    MathSciNet  Google Scholar 

  8. Butt W A, Yan L, Kendrick A S. Adaptive dynamic surface control of a hypersonic flight vehicle with improved tracking. Asian J Control, 2013, 15: 594–605

    Article  MathSciNet  Google Scholar 

  9. Chen M, Shao S Y, Jiang B. Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans Cybern, 2017, 47: 3110–3123

    Article  Google Scholar 

  10. Xu B, Shou Y X, Luo J, et al. Neural learning control of strict-feedback systems using disturbance observer. IEEE Trans Neural Netw Learn Syst, 2019, 30: 1296–1307

    Article  MathSciNet  Google Scholar 

  11. Xu B, Huang X Y, Wang D W, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J Control, 2014, 16: 162–174

    Article  MathSciNet  Google Scholar 

  12. Chen M, Tao G. Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Trans Cybern, 2016, 46: 1851–1862

    Article  Google Scholar 

  13. Wang F K, Chen W S, Dai H, et al. Backstepping control of a quadrotor unmanned aerial vehicle based on multi-rate sampling. Sci China Inf Sci, 2019, 62: 019203

    Article  Google Scholar 

  14. Pukdeboon C. Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft. Sci China Inf Sci, 2019, 62: 012206

    Article  MathSciNet  Google Scholar 

  15. Xu B. Composite learning finite-time control with application to quadrotors. IEEE Trans Syst Man Cyber Syst, 2018, 48: 1806–1815

    Article  Google Scholar 

  16. Duan H B, Huo M Z, Yang Z Y, et al. Predator-prey pigeon-inspired optimization for UAV ALS longitudinal parameters tuning. IEEE Trans Aerosp Electron Syst, 2019, 55: 2347–2358

    Article  Google Scholar 

  17. Qian W, Xing W W, Wang L, et al. New optimal analysis method to stability and H performance of varying delayed systems. ISA Trans, 2019, 93: 137–144

    Article  Google Scholar 

  18. Qin H D, Yu X, Zhu Z B, et al. An expectation-maximization based single-beacon underwater navigation method with unknown ESV. Neurocomputing, 2020, 378: 295–303

    Article  Google Scholar 

  19. Lyu X J, Di L, Lin Z L, et al. Characteristic model based all-coefficient adaptive control of an AMB suspended energy storage flywheel test rig. Sci China Inf Sci, 2018, 61: 112204

    Article  Google Scholar 

  20. Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors. Sci China Inf Sci, 2019, 62: 014201

    Article  Google Scholar 

  21. Zhu W, Zhou Q H, Wang D D, et al. Fully distributed consensus of second-order multi-agent systems using adaptive event-based control. Sci China Inf Sci, 2018, 61: 129201

    Article  MathSciNet  Google Scholar 

  22. Rodriguez A, Dickeson J, Cifdaloz O, et al. Modeling and control of scramjet-powered hypersonic vehicles: challenges, trends, and tradeoffs. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, 2008. 6793

  23. Smart M K, Hass N E, Paull A. Flight data analysis of the HyShot 2 scramjet flight experiment. AIAA J, 2006, 44: 2366–2375

    Article  Google Scholar 

  24. Yao Z H. Control strategy design for scramjet engine with flight/propulsion coupling properties (in Chinese). Dissertation for Ph.D. Degreee. Harbin: Harbin Institute of Technology, 2010

    Google Scholar 

  25. Liu K L. Research on aerodynamic characteristics of hypersonic inlets with dynamic/steady angle-of-attack (in Chinese). Dissertation for Ph.D. Degreee. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011

    Google Scholar 

  26. Torrez S, Driscoll J, Dalle D, et al. Hypersonic vehicle thrust sensitivity to angle of attack and mach number. In: Proceedings of AIAA Atmospheric Flight Mechanics Conference, 2009. 6152

  27. Guo Y Y, Xu B, Hu X X, et al. Two controller designs of hypersonic flight vehicle under actuator dynamics and AOA constraint. Aerospace Sci Tech, 2018, 80: 11–19

    Article  Google Scholar 

  28. Bu X W, Xiao Y, Wang K. A prescribed performance control approach guaranteeing small overshoot for air-breathing hypersonic vehicles via neural approximation. Aerospace Sci Tech, 2017, 71: 485–498

    Article  Google Scholar 

  29. Tee K P, Ge S S. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int J Control, 2011, 84: 2008–2023

    Article  MathSciNet  Google Scholar 

  30. Liu Y J, Tong S C. Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica, 2016, 64: 70–75

    Article  MathSciNet  Google Scholar 

  31. Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45: 918–927

    Article  MathSciNet  Google Scholar 

  32. Ren B B, Ge S S, Tee K P, et al. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans Neural Netw, 2010, 21: 1339–1345

    Article  Google Scholar 

  33. An H, Xia H W, Wang C H. Barrier Lyapunov function-based adaptive control for hypersonic flight vehicles. Nonlin Dyn, 2017, 88: 1833–1853

    Article  MathSciNet  Google Scholar 

  34. Xu B, Shi Z K, Sun F C, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults. IEEE Trans Cybern, 2019, 49: 1047–1057

    Article  Google Scholar 

  35. Liu J X, An H, Gao Y B, et al. Adaptive control of hypersonic flight vehicles with limited angle-of-attack. IEEE/ASME Trans Mechatron, 2018, 23: 883–894

    Article  Google Scholar 

  36. An H, Wu Q Q, Xia H W, et al. Control of a time-varying hypersonic vehicle model subject to inlet un-start condition. J Franklin Institute, 2018, 355: 4164–4197

    Article  Google Scholar 

  37. Liu Y J, Lu S M, Li D J, et al. Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems. IEEE Trans Syst Man Cybern Syst, 2017, 47: 1546–1553

    Article  Google Scholar 

  38. Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle. J Guidance Control Dyn, 2007, 30: 856–869

    Article  Google Scholar 

  39. Levant A. Robust exact differentiation via sliding mode technique. Automatica, 1998, 34: 379–384

    Article  MathSciNet  Google Scholar 

  40. Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Automat Contr, 1996, 41: 447–451

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61622308, 61873206, 61933010), Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (Grant Nos. ICT1900312, ICT20037), Stable Supporting Fund of Science and Technology on Underwater Vehicle Technology (Grant No. SXJQR2018WDKT05), and Synergy Innovation Foundation of the University and Enterprise for Graduate Students in Northwestern Polytechnical University (Grant No. XQ201904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xu, B., Han, W. et al. Robust adaptive control of hypersonic flight vehicle with asymmetric AOA constraint. Sci. China Inf. Sci. 63, 212203 (2020). https://doi.org/10.1007/s11432-019-2682-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2682-y

Keywords

Navigation