Skip to main content
Log in

Nonlinear photoresponse of metallic graphene-like VSe2 ultrathin nanosheets for pulse laser generation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Vanadium diselenide (VSe2), a typical metallic behaviour material among transition metal dichalcogenides (TMDCs) family, exhibits excellent photoelectric characteristics with a zero band gap, missing applicaiotn in pulse generation. In this work, a high-quality VSe2 saturable absorber (SA) was synthesized through a liquid-phase exfoliation method. The saturable absorption of obtained VSe2-SA was characterized systematically. The measured modulation depth was 9.9%, and the saturated intensity was 533.8 µJ/cm2. By incorporating this optical modulator into a ytterbium-doped fiber laser cavity, a stable passively Q-switched laser could be achieved. The pulse had the central wavelength of 1064.03 nm. As the pump power was increased, the repetition rate increased from 24.3 kHz to 35.6 kHz, and the pulse duration decreased from 7.21 µs to 5.27 µs. The output power had the maximum value of 28.55 mW. These results indicated that VSe2 is an effective candidate to generate pulse laser due to its excellent nonlinear optical properties and universal photoelectric response, which may advance the applications of VSe2-based nonlinear optics and photoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penilla E H, Devia-Cruz L F, Wieg A T, et al. Ultrafast laser welding of ceramics. Science, 2019, 365: 803–808

    Article  Google Scholar 

  2. Liu Z J, Jin X X, Su R T, et al. Development status of high power fiber lasers and their coherent beam combination. Sci China Inf Sci, 2019, 62: 041301

    Article  Google Scholar 

  3. Malinauskas M, Žukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl, 2016, 5: 16133

    Article  Google Scholar 

  4. Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction. Rev Mod Phys, 2013, 85: 751–793

    Article  Google Scholar 

  5. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  6. Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 2009, 19: 3077–3083

    Article  Google Scholar 

  7. Zhang H, Bao Q L, Tang D Y, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl Phys Lett, 2009, 95: 141103

    Article  Google Scholar 

  8. Sun Z P, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803–810

    Article  Google Scholar 

  9. Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl Phys Lett, 2010, 97: 203106

    Article  Google Scholar 

  10. Liu W J, Pang L H, Han H N, et al. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci Rep, 2016, 6: 19997

    Article  Google Scholar 

  11. Jin L, Ma X H, Zhang H, et al. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Opt Express, 2018, 26: 31244–31252

    Article  Google Scholar 

  12. Hisyam M B, Rusdi M F M, Latiff A A, et al. Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber. IEEE J Sel Top Quantum Electron, 2017, 23: 39–43

    Article  Google Scholar 

  13. Wang T, Jin X X, Yang J, et al. Ultra-stable pulse generation in ytterbium-doped fiber laser based on black phosphorus. Nanoscale Adv, 2019, 1: 195–202

    Article  Google Scholar 

  14. Yang Y Y, Yang S, Li C, et al. Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition. Opt Laser Technol, 2019, 111: 571–574

    Article  Google Scholar 

  15. Li L, Jiang S Z, Wang Y G, et al. WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser. Opt Express, 2015, 23: 28698

    Article  Google Scholar 

  16. Luo A P, Liu M, Wang X D, et al. Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser. Photon Res, 2015, 3: 69

    Article  Google Scholar 

  17. Du J, Wang Q K, Jiang G B, et al. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci Rep, 2015, 4: 6346

    Article  Google Scholar 

  18. Liu W J, Liu M L, Han H N, et al. Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers. Photon Res, 2018, 6: 15–21

    Article  Google Scholar 

  19. Liu W J, Liu M L, OuYang Y L, et al. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology, 2018, 29: 394002

    Article  Google Scholar 

  20. Tian X L, Wei R F, Liu M, et al. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser. Nanoscale, 2018, 10: 9608–9615

    Article  Google Scholar 

  21. Yan B Z, Zhang B T, Nie H K, et al. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale, 2018, 10: 20171–20177

    Article  Google Scholar 

  22. Nie H K, Sun X L, Zhang B T, et al. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 µm bulk laser. Opt Lett, 2018, 43: 3349–3352

    Article  Google Scholar 

  23. Niu K D, Sun R Y, Chen Q Y, et al. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon Res, 2018, 6: 72–76

    Article  Google Scholar 

  24. Bayard M, Sienko M J. Anomalous electrical and magnetic properties of vanadium diselenide. J Solid State Chem, 1976, 19: 325–329

    Article  Google Scholar 

  25. Li F Y, Tu K X, Chen Z F. Versatile electronic properties of VSe2 bulk, few-layers, monolayer, nanoribbons, and nanotubes: a computational exploration. J Phys Chem C, 2014, 118: 21264–21274

    Article  Google Scholar 

  26. Xu K, Chen P Z, Li X L, et al. Ultrathin nanosheets of vanadium diselenide: a metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew Chem Int Ed, 2013, 52: 10477–10481

    Article  Google Scholar 

  27. Woolley A M, Wexler G. Band structures and Fermi surfaces for 1T-TaS2, 1T-TaSe2 and 1T-VSe2. J Phys C-Solid State Phys, 1977, 10: 2601–2616

    Article  Google Scholar 

  28. Ōnuki Y, Inada R, Tanuma S, et al. Electrochemical characteristics of TiS2, ZrSe2 and VSe2 in secondary lithium battery. Jpn J Appl Phys, 1981, 20: 1583–1588

    Article  Google Scholar 

  29. Wang Y P, Qian B B, Li H H, et al. VSe2/graphene nanocomposites as anode materials for lithium-ion batteries. Mater Lett, 2015, 141: 35–38

    Article  Google Scholar 

  30. Yang C, Feng J R, Lv F, et al. Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv Mater, 2018, 30: 1800036

    Article  Google Scholar 

  31. Jiang X T, Liu S X, Liang W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon Rev, 2018, 12: 1700229

    Article  Google Scholar 

  32. Cheng P K, Tang C Y, Wang X Y, et al. Passively Q-switched ytterbium-doped fiber laser based on broadband multilayer platinum ditelluride (PtTe2) saturable absorber. Sci Rep, 2019, 9: 10106

    Article  Google Scholar 

  33. Ge Y Q, Zhu Z F, Xu Y H, et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv Opt Mater, 2018, 6: 1701166

    Article  Google Scholar 

  34. Atkins R, Disch S, Jones Z, et al. Synthesis, structure and electrical properties of a new tin vanadium selenide. J Solid State Chem, 2013, 202: 128–133

    Article  Google Scholar 

  35. Wu H S, Song J X, Wu J, et al. Concave gold bipyramid saturable absorber based 1018 nm passively Q-switched fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6

    Google Scholar 

  36. Wang T, Wang J, Wu J, et al. Near-infrared optical modulation for ultrashort pulse generation employing indium monosulfide (InS) two-dimensional semiconductor nanocrystals. Nanomaterials, 2019, 9: 865

    Article  Google Scholar 

  37. Liu J, Wu S, Yang Q H, et al. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt Lett, 2011, 36: 4008–4010

    Article  Google Scholar 

  38. Luo Z Q, Huang Y Z, Weng J, et al. 1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt Express, 2013, 21: 29516–29522

    Article  Google Scholar 

  39. Song J X, Wu H S, Wu J, et al. Passively Q-switched Tm-doped fiber laser based on concave gold bipyramids assembled quasi-2D saturable absorber. Laser Phys Lett, 2018, 15: 075104

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Grant No. 61875223), Natural Science Foundation of Hunan Province (Grant No. 2018JJ3610), Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wu or Kai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Shi, X., Wang, J. et al. Nonlinear photoresponse of metallic graphene-like VSe2 ultrathin nanosheets for pulse laser generation. Sci. China Inf. Sci. 62, 220406 (2019). https://doi.org/10.1007/s11432-019-2677-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2677-9

Keywords

Navigation