Skip to main content
Log in

All-carbon hybrids for high-performance electronics, optoelectronics and energy storage

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The family of carbon allotropes such as carbon nanotubes (CNTs) and graphene, with their rich chemical and physical characteristics, has attracted intense attentions in the field of nanotechnology and enabled a number of disruptive devices and applications in electronics, optoelectronics and energy storage. Just as no individual 2D (two-dimensional) material can meet all technological requirements of various applications, combining carbon materials of different dimensionality into a hybrid form is a promising strategy to optimize properties and to build novel devices operating with new principles. In particular, the direct synthesis of 2D or 3D (three-dimensional) sp2-hybridized all-carbon hybrids based on merging CNTs and graphene affords a great promise for future electronic, optoelectronic and energy storages. Here, we review the progress of all-carbon hybrids-based devices, covering material preparation, fabrication techniques as well as applied devices. Recent progress about large-scale synthesis and assembly techniques is highlighted, and with many intrinsic advantages, the all-carbon strategy opens up a highly promising approach to obtain high-performance integrated circuits. Moreover, this review will discuss the remaining challenges in the field and provide perspectives on future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  2. Jariwala D, Sangwan V K, Lauhon L J, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev, 2013, 42: 2824–2860

    Article  Google Scholar 

  3. Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  Google Scholar 

  4. Avouris P, Chen Z H, Perebeinos V. Carbon-based electronics. Nat Nanotech, 2007, 2: 605–615

    Article  Google Scholar 

  5. Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photon, 2010, 4: 611–622

    Article  Google Scholar 

  6. Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438: 201–204

    Article  Google Scholar 

  7. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200

    Article  Google Scholar 

  8. Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706–710

    Article  Google Scholar 

  9. Liao L, Lin Y C, Bao M Q, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467: 305–308

    Article  Google Scholar 

  10. Yang H, Heo J, Park S, et al. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science, 2012, 336: 1140–1143

    Article  Google Scholar 

  11. Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit. Science, 2011, 332: 1294–1297

    Article  Google Scholar 

  12. Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474: 64–67

    Article  Google Scholar 

  13. Ansell D, Radko I P, Han Z, et al. Hybrid graphene plasmonic waveguide modulators. Nat Commun, 2015, 6: 8846

    Article  Google Scholar 

  14. Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotech, 2014, 9: 273–278

    Article  Google Scholar 

  15. Baugher B W H, Churchill H O H, Yang Y, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nanotech, 2014, 9: 262–267

    Article  Google Scholar 

  16. Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nanotech, 2014, 9: 257–261

    Article  Google Scholar 

  17. Koppens F H L, Chang D E, Garcia de Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett, 2011, 11: 3370–3377

    Article  Google Scholar 

  18. Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 2014, 8: 1086–1101

    Article  Google Scholar 

  19. Sun Z P, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803–810

    Article  Google Scholar 

  20. Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotech, 2012, 7: 363–368

    Article  Google Scholar 

  21. Franklin A D, Chen Z H. Length scaling of carbon nanotube transistors. Nat Nanotech, 2010, 5: 858–862

    Article  Google Scholar 

  22. Cao Q, Han S J, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for highperformance electronics. Nat Nanotech, 2013, 8: 180–186

    Article  Google Scholar 

  23. Itkis M E, Borondics F, Yu A, et al. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312: 413–416

    Article  Google Scholar 

  24. Geier M L, Prabhumirashi P L, McMorrow J J, et al. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. Nano Lett, 2013, 13: 4810–4814

    Article  Google Scholar 

  25. Park H, Afzali A, Han S J, et al. High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotech, 2012, 7: 787–791

    Article  Google Scholar 

  26. Liu H P, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2011, 2: 309

    Article  Google Scholar 

  27. Zhu H W, Xu C L, Wu D H. Direct synthesis of long single-walled carbon nanotube strands. Science, 2002, 296: 884–886

    Article  Google Scholar 

  28. Charlier J C, Blase X, Roche S. Electronic and transport properties of nanotubes. Rev Mod Phys, 2007, 79: 677–732

    Article  Google Scholar 

  29. Mintmire J W, White C T. Universal density of states for carbon nanotubes. Phys Rev Lett, 1998, 81: 2506–2509

    Article  Google Scholar 

  30. Wong H S P, Akinwande D. Carbon Nanotube and Graphene Device Physics. Cambridge: Cambridge University Press, 2011

    Google Scholar 

  31. Barone P W, Baik S, Heller D A, et al. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater, 2004, 4: 86–92

    Article  Google Scholar 

  32. Bahk Y M, Ramakrishnan G, Choi J, et al. Plasmon enhanced terahertz emission from single layer graphene. ACS Nano, 2014, 8: 9089–9096

    Article  Google Scholar 

  33. Behnam A, Sangwan V K, Zhong X Y, et al. High-field transport and thermal reliability of sorted carbon nanotube network devices. ACS Nano, 2013, 7: 482–490

    Article  Google Scholar 

  34. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  35. Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358: 220–222

    Article  Google Scholar 

  36. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605

    Article  Google Scholar 

  37. Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483–487

    Article  Google Scholar 

  38. Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. J Phys Chem, 1995, 99: 10694–10697

    Article  Google Scholar 

  39. Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett, 1995, 243: 49–54

    Article  Google Scholar 

  40. Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274: 1701–1703

    Article  Google Scholar 

  41. Hata K, Futaba D N, Mizuno K. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306: 1362–1364

    Article  Google Scholar 

  42. Zhang Y G, Chang A, Cao J, et al. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett, 2001, 79: 3155–3157

    Article  Google Scholar 

  43. Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotech, 2006, 1: 60–65

    Article  Google Scholar 

  44. Arnold M S, Stupp S I, Hersam M C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett, 2005, 5: 713–718

    Article  Google Scholar 

  45. Green A A, Hersam M C. Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type. ACS Nano, 2011, 5: 1459–1467

    Article  Google Scholar 

  46. Green A A, Hersam M C. Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotech, 2009, 4: 64–70

    Article  Google Scholar 

  47. Green A A, Hersam M C. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv Mater, 2011, 23: 2185–2190

    Article  Google Scholar 

  48. Antaris A L, Seo J W T, Green A A, et al. Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano, 2010, 4: 4725–4732

    Article  Google Scholar 

  49. Yang F, Wang X, Zhang D Q, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510: 522–524

    Article  Google Scholar 

  50. Yang F, Wang X, Si J, et al. Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes. ACS Nano, 2017, 11: 186–193

    Article  Google Scholar 

  51. Wang J T, Jin X, Liu Z B, et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat Catal, 2018, 1: 326–331

    Article  Google Scholar 

  52. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotech, 2008, 3: 563–568

    Article  Google Scholar 

  53. Liu N, Luo F, Wu H X, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater, 2008, 18: 1518–1525

    Article  Google Scholar 

  54. Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458: 872–876

    Article  Google Scholar 

  55. Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458: 877–880

    Article  Google Scholar 

  56. Terrones M, Botello-Méndez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5: 351–372

    Article  Google Scholar 

  57. Yan Q M, Huang B, Yu J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett, 2007, 7: 1469–1473

    Article  Google Scholar 

  58. Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 2009, 8: 203–207

    Article  Google Scholar 

  59. de Heer W A, Berger C, Ruan M, et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc Natl Acad Sci USA, 2011, 108: 16900–16905

    Article  Google Scholar 

  60. Somani P R, Somani S P, Umeno M. Planer nano-graphenes from camphor by CVD. Chem Phys Lett, 2006, 430: 56–59

    Article  Google Scholar 

  61. Li X S, Cai W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312–1314

    Article  Google Scholar 

  62. Lee S, Lee K, Zhong Z H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett, 2010, 10: 4702–4707

    Article  Google Scholar 

  63. Gao L B, Ren W C, Xu H L, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun, 2012, 3: 699

    Article  Google Scholar 

  64. Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574–578

    Article  Google Scholar 

  65. Pei S, Cheng H M. The reduction of graphene oxide. Carbon, 2012, 50: 3210–3228

    Article  Google Scholar 

  66. Wang H, Xu X Z, Li J Y, et al. Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv Mater, 2016, 28: 8968–8974

    Article  Google Scholar 

  67. Liu C, Xu X Z, Qiu L, et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat Chem, 2019, 11: 730–736

    Article  Google Scholar 

  68. Xu X Z, Zhang Z H, Dong J C, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci Bull, 2017, 62: 1074–1080

    Article  Google Scholar 

  69. Yan Z, Peng Z W, Casillas G, et al. Rebar graphene. ACS Nano, 2014, 8: 5061–5068

    Article  Google Scholar 

  70. Novaes F D, Rurali R, Ordejón P. Electronic transport between graphene layers covalently connected by carbon nanotubes. ACS Nano, 2010, 4: 7596–7602

    Article  Google Scholar 

  71. Varshney V, Patnaik S S, Roy A K, et al. Modeling of thermal transport in pillared-graphene architectures. ACS Nano, 2010, 4: 1153–1161

    Article  Google Scholar 

  72. Lin X Y, Liu P, Wei Y, et al. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat Commun, 2013, 4: 2920

    Article  Google Scholar 

  73. Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Lett, 2012, 12: 3602–3608

    Article  Google Scholar 

  74. Hong T K, Lee D W, Choi H J, et al. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets. ACS Nano, 2010, 4: 3861–3868

    Article  Google Scholar 

  75. Tristán-López F, Morelos-Gómez A, Vega-Díaz S M, et al. Large area films of alternating graphene-carbon nanotube layers processed in water. ACS Nano, 2013, 7: 10788–10798

    Article  Google Scholar 

  76. Fan Z J, Yan J, Zhi L J, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater, 2010, 22: 3723–3728

    Article  Google Scholar 

  77. Zhu Y, Li L, Zhang C G, et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun, 2012, 3: 1225

    Article  Google Scholar 

  78. Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotech, 2014, 9: 555–562

    Article  Google Scholar 

  79. Ando T, Nakanishi T. Impurity scattering in carbon nanotubes absence of back scattering. J Phys Soc Jpn, 1998, 67: 1704–1713

    Article  Google Scholar 

  80. Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146: 351–355

    Article  Google Scholar 

  81. Gusynin V P, Sharapov S G. Unconventional integer quantum hall effect in graphene. Phys Rev Lett, 2005, 95: 146801

    Article  Google Scholar 

  82. Tworzydlo J, Trauzettel B, Titov M, et al. Sub-poissonian shot noise in graphene. Phys Rev Lett, 2006, 96: 246802

    Article  Google Scholar 

  83. Ziegler K. Robust transport properties in graphene. Phys Rev Lett, 2006, 97: 266802

    Article  Google Scholar 

  84. Han M Y, Özyilmaz B, Zhang Y B, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98: 206805

    Article  Google Scholar 

  85. Berger C. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191–1196

    Article  Google Scholar 

  86. Schwierz F. Graphene transistors. Nat Nanotech, 2010, 5: 487–496

    Article  Google Scholar 

  87. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  Google Scholar 

  88. Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108: 19912–19916

    Article  Google Scholar 

  89. Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327: 662–662

    Article  Google Scholar 

  90. Wu Y Q, Lin Y M, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472: 74–78

    Article  Google Scholar 

  91. Sire C, Ardiaca F, Lepilliet S, et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett, 2012, 12: 1184–1188

    Article  Google Scholar 

  92. Kim B J, Lee S K, Kang M S, et al. Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano, 2012, 6: 8646–8651

    Article  Google Scholar 

  93. Li S L, Miyazaki H, Kumatani A, et al. Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett, 2010, 10: 2357–2362

    Article  Google Scholar 

  94. Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 2004, 4: 35–39

    Article  Google Scholar 

  95. Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors. Science, 2001, 294: 1317–1320

    Article  Google Scholar 

  96. Sun D M, Timmermans M Y, Tian Y, et al. Flexible high-performance carbon nanotube integrated circuits. Nat Nanotech, 2011, 6: 156–161

    Article  Google Scholar 

  97. Sun D M, Timmermans M Y, Kaskela A, et al. Mouldable all-carbon integrated circuits. Nat Commun, 2013, 4: 2302

    Article  Google Scholar 

  98. Derycke V, Martel R, Appenzeller J, et al. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 2001, 1: 453–456

    Article  Google Scholar 

  99. Franklin A D, Luisier M, Han S J, et al. Sub-10 nm carbon nanotube transistor. Nano Lett, 2012, 12: 758–762

    Article  Google Scholar 

  100. Dong X C, Fu D L, Fang W J, et al. Doping single-layer graphene with aromatic molecules. Small, 2009, 5: 1422–1426

    Article  Google Scholar 

  101. Liu Y, Jin Z, Wang J Y, et al. Nitrogen-doped single-walled carbon nanotubes grown on substrates: evidence for framework doping and their enhanced properties. Adv Funct Mater, 2011, 21: 986–992

    Article  Google Scholar 

  102. Lv R T, Cui T X, Jun M S, et al. Open-ended, n-doped carbon nanotube-graphene hybrid nanostructures as highperformance catalyst support. Adv Funct Mater, 2011, 21: 999–1006

    Article  Google Scholar 

  103. Lin Y M, Appenzeller J, Knoch J, et al. High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans Nanotechnol, 2005, 4: 481–489

    Article  Google Scholar 

  104. Yu W J, Kang B R, Lee I H, et al. Majority carrier type conversion with floating gates in carbon nanotube transistors. Adv Mater, 2009, 21: 4821–4824

    Article  Google Scholar 

  105. Nosho Y, Ohno Y, Kishimoto S, et al. Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology, 2006, 17: 3412–3415

    Article  Google Scholar 

  106. Yamamoto K, Kamimura T, Matsumoto K. Nitrogen doping of single-walled carbon nanotube by using mass-separated low-energy ion beams. Jpn J Appl Phys, 2005, 44: 1611–1614

    Article  Google Scholar 

  107. Moriyama N, Ohno Y, Kitamura T, et al. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges. Nanotechnology, 2010, 21: 165201

    Article  Google Scholar 

  108. Liu W, Song M S, Kong B, et al. Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater, 2017, 29: 1603436

    Article  Google Scholar 

  109. Khang D Y. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208–212

    Article  Google Scholar 

  110. Huang J H, Fang J H, Liu C C, et al. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics. ACS Nano, 2011, 5: 6262–6271

    Article  Google Scholar 

  111. Cao Q, Hur S H, Zhu Z T, et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 2006, 18: 304–309

    Article  Google Scholar 

  112. Aikawa S, Einarsson E, Thurakitseree T, et al. Deformable transparent all-carbon-nanotube transistors. Appl Phys Lett, 2012, 100: 063502

    Article  Google Scholar 

  113. Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett, 2009, 9: 1949–1955

    Article  Google Scholar 

  114. Lu R T, Christianson C, Weintrub B, et al. High photoresponse in hybrid graphene-carbon nanotube infrared detectors. ACS Appl Mater Interfaces, 2013, 5: 11703–11707

    Article  Google Scholar 

  115. Kim S H, Song W, Jung M W, et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv Mater, 2014, 26: 4247–4252

    Article  Google Scholar 

  116. Peng L W, Feng Y Y, Lv P, et al. Transparent, conductive, and flexible multiwalled carbon nanotube/graphene hybrid electrodes with two three-dimensional microstructures. J Phys Chem C, 2012, 116: 4970–4978

    Article  Google Scholar 

  117. Liu Y J, Liu Y D, Qin S C, et al. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res, 2017, 10: 1880–1887

    Article  Google Scholar 

  118. Liu Y D, Wang F Q, Wang X M, et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat Commun, 2015, 6: 8589

    Article  Google Scholar 

  119. Jang S, Jang H, Lee Y, et al. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology, 2010, 21: 425201

    Article  Google Scholar 

  120. Liu Y D, Wang F Q, Liu Y J, et al. Charge transfer at carbon nanotube-graphene van der Waals heterojunctions. Nanoscale, 2016, 8: 12883–12886

    Article  Google Scholar 

  121. Kholmanov I N, Magnuson C W, Piner R, et al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater, 2015, 27: 3053–3059

    Article  Google Scholar 

  122. Yu W J, Lee S Y, Chae S H, et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett, 2011, 11: 1344–1350

    Article  Google Scholar 

  123. Yu W J, Chae S H, Lee S Y, et al. Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv Mater, 2011, 23: 1889–1893

    Article  Google Scholar 

  124. Jung S, Kim J H, Kim J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv Mater, 2014, 26: 4825–4830

    Article  Google Scholar 

  125. Wang X W, Gu Y, Xiong Z P, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 2014, 26: 1336–1342

    Article  Google Scholar 

  126. Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8: 4689–4697

    Article  Google Scholar 

  127. Yeom C, Chen K, Kiriya D, et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Adv Mater, 2015, 27: 1561–1566

    Article  Google Scholar 

  128. Zhu B W, Niu Z Q, Wang H, et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small, 2014, 10: 3625–3631

    Article  Google Scholar 

  129. Bae G Y, Pak S W, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater, 2016, 28: 5300–5306

    Article  Google Scholar 

  130. Sheng L Z, Liang Y, Jiang L L, et al. Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv Funct Mater, 2015, 25: 6545–6551

    Article  Google Scholar 

  131. Yao H B, Ge J, Wang C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv Mater, 2013, 25: 6692–6698

    Article  Google Scholar 

  132. Jian M Q, Xia K L, Wang Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv Funct Mater, 2017, 27: 1606066

    Article  Google Scholar 

  133. Li J H, Li W X, Huang W P, et al. Fabrication of highly reinforced and compressible graphene/carbon nanotube hybrid foams via a facile self-assembly process for application as strain sensors and beyond. J Mater Chem C, 2017, 5: 2723–2730

    Article  Google Scholar 

  134. Kim K H, Oh Y, Islam M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat Nanotech, 2012, 7: 562–566

    Article  Google Scholar 

  135. Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater, 2013, 25: 2554–2560

    Article  Google Scholar 

  136. Li X L, Sha J W, Lee S K, et al. Rivet graphene. ACS Nano, 2016, 10: 7307–7313

    Article  Google Scholar 

  137. Nguyen D D, Tai N H, Chen S Y, et al. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale, 2012, 4: 632–638

    Article  Google Scholar 

  138. Lee D H, Kim J E, Han T H, et al. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv Mater, 2010, 22: 1247–1252

    Article  Google Scholar 

  139. Lyth S M, Silva S R P. Field emission from multiwall carbon nanotubes on paper substrates. Appl Phys Lett, 2007, 90: 173124

    Article  Google Scholar 

  140. Mani V, Devadas B, Chen S M. Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron, 2013, 41: 309–315

    Article  Google Scholar 

  141. Liu F, Piao Y X, Choi K S, et al. Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon, 2012, 50: 123–133

    Article  Google Scholar 

  142. Chen H, Qian W Z, Xie Q, et al. Graphene-carbon nanotube hybrids as robust, rapid, reversible adsorbents for organics. Carbon, 2017, 116: 409–414

    Article  Google Scholar 

  143. Gabor N M, Zhong Z H, Bosnick K, et al. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 2009, 325: 1367–1371

    Article  Google Scholar 

  144. Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene. Nat Commun, 2011, 2: 458

    Article  Google Scholar 

  145. Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun, 2011, 2: 579

    Article  Google Scholar 

  146. Lu R T, Shi J J, Baca F J, et al. High performance multiwall carbon nanotube bolometers. J Appl Phys, 2010, 108: 084305

    Article  Google Scholar 

  147. He X W, Liéonard F, Kono J. Uncooled carbon nanotube photodetectors. Adv Opt Mater, 2015, 3: 989–1011

    Article  Google Scholar 

  148. Pei T, Xu H T, Zhang Z Y, et al. Electronic transport in single-walled carbon nanotube/graphene junction. Appl Phys Lett, 2011, 99: 113102

    Article  Google Scholar 

  149. Pyo S, Kim W, Jung H I, et al. Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors. Small, 2017, 13: 1700918

    Article  Google Scholar 

  150. Velten J, Mozer A J, Li D, et al. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology, 2012, 23: 085201

    Article  Google Scholar 

  151. Choi H, Kim H, Hwang S, et al. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol Energy Mater Sol Cells, 2011, 95: 323–325

    Article  Google Scholar 

  152. Gan X, Lv R T, Bai J F, et al. Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors. 2D Mater, 2015, 2: 034003

    Article  Google Scholar 

  153. Chung K, Lee C H, Yi G C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science, 2010, 330: 655–657

    Article  Google Scholar 

  154. Yoo H, Chung K, Choi Y S, et al. Microstructures of GaN thin films grown on graphene layers. Adv Mater, 2012, 24: 515–518

    Article  Google Scholar 

  155. Han N, Cuong T V, Han M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat Commun, 2013, 4: 1452

    Article  Google Scholar 

  156. Lee C H, Kim Y J, Hong Y J, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv Mater, 2011, 23: 4614–4619

    Article  Google Scholar 

  157. Seo T H, Park A H, Park S, et al. Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes. Sci Rep, 2015, 5: 7747

    Article  Google Scholar 

  158. Qin S C, Wang F Q, Liu Y J, et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater, 2017, 4: 035022

    Article  Google Scholar 

  159. Lee M, Lee W, Choi S, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater, 2017, 29: 1700951

    Article  Google Scholar 

  160. Dai S L, Wu X H, Liu D P, et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 2018, 10: 21472–21480

    Article  Google Scholar 

  161. Qin S C, Chen X Q, Du Q Q, et al. Sensitive and robust ultraviolet photodetector array based on self-assembled graphene/C60 hybrid films. ACS Appl Mater Interfaces, 2018, 10: 38326–38333

    Article  Google Scholar 

  162. Qin S C, Jiang H Z, Du Q Q, et al. Planar graphene-C60-graphene heterostructures for sensitive UV-visible photodetection. Carbon, 2019, 146: 486–490

    Article  Google Scholar 

  163. Jnawali G, Rao Y, Beck J H, et al. Observation of ground- and excited-state charge transfer at the C60/graphene interface. ACS Nano, 2015, 9: 7175–7185

    Article  Google Scholar 

  164. Ojeda-Aristizabal C, Santos E J G, Onishi S, et al. Molecular arrangement and charge transfer in C60/graphene heterostructures. ACS Nano, 2017, 11: 4686–4693

    Article  Google Scholar 

  165. Cheng Q, Tang J, Ma J, et al. Graphene and carbon nanotube composite electrodes for supercapacitors with ultrahigh energy density. Phys Chem Chem Phys, 2011, 13: 17615

    Article  Google Scholar 

  166. Izadi-Najafabadi A, Yasuda S, Kobashi K, et al. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater, 2010, 22: E235–E241

    Article  Google Scholar 

  167. Zhang D S, Yan T T, Shi L Y, et al. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J Mater Chem, 2012, 22: 14696

    Article  Google Scholar 

  168. Yu D S, Dai L M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett, 2010, 1: 467–470

    Article  Google Scholar 

  169. Cheng Q, Tang J, Ma J, et al. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon, 2011, 49: 2917–2925

    Article  Google Scholar 

  170. Yang S Y, Chang K H, Tien H W, et al. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem, 2011, 21: 2374–2380

    Article  Google Scholar 

  171. Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett, 2008, 8: 3166–3170

    Article  Google Scholar 

  172. Mao Y L, Zhong J X. The computational design of junctions by carbon nanotube insertion into a graphene matrix. New J Phys, 2009, 11: 093002

    Article  Google Scholar 

  173. Du F, Yu D S, Dai L M, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for highperformance capacitance. Chem Mater, 2011, 23: 4810–4816

    Article  Google Scholar 

  174. Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano, 2012, 6: 10759–10769

    Article  Google Scholar 

  175. Li S S, Luo Y H, Lv W, et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv Energy Mater, 2011, 1: 486–490

    Article  Google Scholar 

  176. Bae S H, Karthikeyan K, Lee Y S, et al. Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery. Carbon, 2013, 64: 527–536

    Article  Google Scholar 

  177. Lv R, Cruz-Silva E, Terrones M. Building complex hybrid carbon architectures by covalent interconnections: graphenenanotube hybrids and more. ACS Nano, 2014, 8: 4061–4069

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key R&D Program of China (Grant Nos. 2018YFB2200500, 2017YFA0206304), National Basic Research Program of China (Grant No. 2014CB921101), National Natural Science Foundation of China (Grant Nos. 61775093, 61427812), National Youth 1000-Talent Plan, ‘Jiangsu Shuangchuang Team’ Program, and Jiangsu NSF (Grant No. BK20170012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuchao Qin or Fengqiu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Liu, Y., Jiang, H. et al. All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Sci. China Inf. Sci. 62, 220403 (2019). https://doi.org/10.1007/s11432-019-2676-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2676-x

Keywords

Navigation