Abstract
In recent years, deep learning has developed rapidly and is widely used in various fields, such as computer vision, speech recognition, and natural language processing. For end-to-end person re-identification, most deep learning methods rely on large-scale datasets. Relatively few methods work with small-scale datasets. Insufficient training samples will affect neural network accuracy significantly. This problem limits the practical application of person re-identification. For small-scale person re-identification, the uncertainty of person representation and the overfitting problem associated with deep learning remain to be solved. Quantifying the uncertainty is difficult owing to complex network structures and the large number of hyperparameters. In this study, we consider the uncertainty of pedestrian representation for small-scale person re-identification. To reduce the impact of uncertain person representations, we transform parameters into distributions and conduct multiple sampling by using multilevel dropout in a testing process. We design an improved Monte Carlo strategy that considers both the average distance and shortest distance for matching and ranking. When compared with state-of-the-art methods, the proposed method significantly improve accuracy on two small-scale person re-identification datasets and is robust on four large-scale datasets.
This is a preview of subscription content, access via your institution.
References
- 1
Zheng L, Shen L Y, Tian L, et al. Scalable person re-identification: a benchmark. In: Proceedings of IEEE International Conference on Computer Vision, 2016. 1116-1124
- 2
Li W, Zhao R, Xiao T, et al. DeepReID: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014. 152-159
- 3
Gou M, Karanam S, Liu W, et al. DukeMTMC4ReID: a large-scale multi-camera person re-identification dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 1425-1434
- 4
Wei L H, Zhang S L, Gao W, et al. Person transfer gan to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. 79-88
- 5
Gray D, Tao H. Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2008. 262–275
- 6
Ma B P, Su Y, Jurie F. Local descriptors encoded by fisher vectors for person re-identification. In: Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2012. 413–422
- 7
Matsukawa T, Okabe T, Suzuki E, et al. Hierarchical gaussian descriptor for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. 1363-1372
- 8
Pala F, Satta R, Fumera G, et al. Multimodal person reidentification using RGB-D cameras. IEEE Trans Circuits Syst Video Technol, 2016, 26: 788–799
- 9
Bai S, Tang P, Torr P H S, et al. Re-ranking via metric fusion for object retrieval and person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. 740-749
- 10
Yu R, Zhou Z C, Bai S, et al. Divide and fuse: a re-ranking approach for person re-identification. 2017. ArXiv: 1708.04169
- 11
Davis J V, Kulis B, Jain P, et al. Information-theoretic metric learning. In: Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007. 209–216
- 12
Köstinger M, Hirzer M, Wohlhart P, et al. Large scale metric learning from equivalence constraints. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012. 2288-2295
- 13
Xiong F, Gou M, Camps O, et al. Person re-identification using kernel-based metric learning methods. In: Proceedings of the European Conference on Computer Vision, 2014. 1-16
- 14
Varior R R, Haloi M, Wang G. Gated siamese convolutional neural network architecture for human re-identification. In: Proceedings of the European Conference on Computer Vision, 2016. 791-808
- 15
Zheng L, Huang Y J, Lu H C, et al. Pose invariant embedding for deep person re-identification. 2017. ArXiv: 1701.07732
- 16
Cho Y J, Yoon K J. PaMM: pose-aware multi-shot matching for improving person re-identification. 2017. ArXiv: 1705.06011
- 17
Lin Y T, Zheng L, Zheng Z D, et al. Improving person re-identification by attribute and identity learning. 2017. ArXiv: 1703.07220
- 18
Geng M Y, Wang Y W, Xiang T, et al. Deep transfer learning for person re-identification. 2016. ArXiv: 1611.05244
- 19
Jin H B, Wang X B, Liao S C, et al. Deep person re-identification with improved embedding and efficient training. In: Proceedings of IEEE International Joint Conference on Biometrics (IJCB). New York: IEEE, 2017. 261–267
- 20
Zhu J Q, Zeng H Q, Du Y Z, et al. Joint feature and similarity deep learning for vehicle re-identification. IEEE Access, 2018, 6: 43724–43731
- 21
Imani Z, Soltanizadeh H. Histogram of the node strength and histogram of the edge weight: two new features for RGB-D person re-identification. Sci China Inf Sci, 2018, 61: 092108
- 22
Liao S C, Hu Y, Zhu X Y, et al. Person re-identification by local maximal occurrence representation and metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. 2197-2206
- 23
Wei L H, Zhang S L, Yao H T, et al. Glad: global-local-alignment descriptor for pedestrian retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017. 420–428
- 24
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. 770-778
- 25
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of IEEE International Conference on Computer Vision, 2015. 1-9
- 26
Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. 248-255
- 27
Ahmed E, Jones M, Marks T K. An improved deep learning architecture for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. 3908-3916
- 28
Zhang X, Luo H, Fan X, et al. Alignedreid: surpassing human-level performance in person re-identification. 2017. ArXiv: 1711.08184
- 29
Sun Y F, Zheng L, Yang Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European Conference on Computer Vision, 2018. 480-496
- 30
Wang G S, Yuan Y F, Chen X, et al. Learning discriminative features with multiple granularities for person reidentification. In: Proceedings of 2018 ACM Multimedia Conference on Multimedia Conference. New York: ACM, 2018. 274–282
- 31
Bai S, Bai X, Tian Q. Scalable person re-identification on supervised smoothed manifold. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 2530-2539
- 32
Yu R, Dou Z Y, Bai S, et al. Hard-aware point-to-set deep metric for person re-identification. In: Proceedings of the European Conference on Computer Vision, 2018. 188-204
- 33
Zheng Z D, Zheng L, Yang Y. A discriminatively learned CNN embedding for person re-identification. ACM Trans Multim Comput Commun Appl, 2017, 14: 13
- 34
Hermans A, Beyer L, Leibe B. In defense of the triplet loss for person re-identification. 2017. ArXiv: 1703.07737
- 35
Zhong Z, Zheng L, Cao D L, et al. Re-ranking person re-identification with k-reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 1318-1327
- 36
Wu L, Hong R C, Wang Y, et al. Cross-entropy adversarial view adaptation for person re-identification. IEEE Trans Circ Syst Video Tech, 2019. doi: https://doi.org/10.1109/TCSVT.2019.2909549
- 37
Liu Z, Wang Y H, Li A N. Hierarchical integration of rich features for video-based person re-identification. IEEE Trans Circuits Syst Video Technol, 2018. doi: https://doi.org/10.1109/TCSVT.2018.2883995
- 38
Zhu Z, Huang T T, Shi B G, et al. Progressive pose attention transfer for person image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. 2347-2356
- 39
Hou R B, Ma B P, Chang H, et al. VRSTC: occlusion-free video person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. 7183-7192
- 40
Chen W H, Chen X T, Zhang J G, et al. A multi-task deep network for person re-identification. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017
- 41
Zheng Z D, Zheng L, Yang Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, 2017. 3754-3762
- 42
Bui T, Hernández-Lobato D, Hernandez-Lobato J, et al. Deep Gaussian processes for regression using approximate expectation propagation. In: Proceedings of International Conference on Machine Learning, 2016. 1472-1481
- 43
Gal Y, Ghahramani Z. Bayesian convolutional neural networks with Bernoulli approximate variational inference. 2015. ArXiv: 1506.02158
- 44
Kwon J, Lee K M. Adaptive visual tracking with minimum uncertainty gap estimation. IEEE Trans Pattern Anal Mach Intell, 2016, 39: 18–31
- 45
Shen F M, Yang Y, Zhou X, et al. Face identification with second-order pooling in single-layer networks. Neurocomputing, 2016, 187: 11–18
- 46
Li Z C, Tang J H. Weakly supervised deep matrix factorization for social image understanding. IEEE Trans Image Process, 2017, 26: 276–288
- 47
Xu Y, Fang X, Li X, et al. Data uncertainty in face recognition. IEEE Trans Cybern, 2014, 44: 1950–1961
- 48
Blundell C, Cornebise J, Kavukcuoglu K, et al. Weight uncertainty in neural networks. 2015. ArXiv: 1505.05424
- 49
Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of International Conference on Machine Learning, 2016. 1050-1059
- 50
Minka T P. A Family of Algorithms for Approximate Bayesian Inference. Cambridge: Massachusetts Institute of Technology, 2001
- 51
Gray D, Brennan S, Tao H. Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS), 2007. 3: 1–7
- 52
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39: 1137–1149
- 53
Bolle R M, Connell J H, Pankanti S, et al. The relation between the ROC curve and the CMC. In: Proceedings of the 4th IEEE Workshop on Automatic Identification Advanced Technologies (AutoID’05), 2005. 15-20
- 54
Cormack G V, Lynam T R. Statistical precision of information retrieval evaluation. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2006. 533-540
- 55
Ketkar N. Introduction to pytorch. In: Deep Learning With Python. Berkeley: Apress, 2017. 195–208
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61673299, 61203247, 61573259, 61573255, 61876218), Fundamental Research Funds for the Central Universities, and the Open Project Program of the National Laboratory of Pattern Recognition (NLPR). The authors would like to thank the anonymous reviewers for their critical and constructive comments and suggestions.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, C., Chen, K., Zang, D. et al. Uncertainty-optimized deep learning model for small-scale person re-identification. Sci. China Inf. Sci. 62, 220102 (2019). https://doi.org/10.1007/s11432-019-2675-3
Received:
Accepted:
Published:
Keywords
- person re-identification
- uncertainty analysis
- deep learning