Quasi-concave optimization of secrecy redundancy rate in HARQ-CC system


In a hybrid automatic repeat request with chase combining (HARQ-CC) system, we analyze physical layer secure performance and determine the secrecy redundancy rate by proposed quasi-concave optimization methods with effective secrecy throughput (EST) criteria. First, key performance metrics, including connection outage probability (COP), secrecy outage probability (SOP), EST, and delay, are discussed. Then, under the constraint of COP, we optimize the secrecy redundancy rate to maximize the EST, which is a quasi-concave function, by both the bisection and fixed-point methods. Furthermore, under the simultaneous constraints of COP and SOP, the bisection and Lagrangian multiplier methods are applied to optimize the secrecy redundancy rate. From the comparison of the numerical and simulated results, it is concluded that EST demonstrates practical secure performance of HARQ-CC, and the proposed optimization methods adjust the secrecy redundancy rate for improved security.

This is a preview of subscription content, access via your institution.


  1. 1

    Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355–1387

    MathSciNet  Article  Google Scholar 

  2. 2

    Csiszar I, Korner J. Broadcast channels with confidential messages. IEEE Trans Inform Theor, 1978, 24: 339–348

    MathSciNet  Article  Google Scholar 

  3. 3

    Leung-Yan-Cheong S, Hellman M. The Gaussian wire-tap channel. IEEE Trans Inform Theor, 1978, 24: 451–456

    MathSciNet  Article  Google Scholar 

  4. 4

    Barros J, Rodrigues M R D. Secrecy capacity of wireless channels. In: Proceedings of IEEE International Symposium on Information Theory, Seattle, 2006. 451–456

  5. 5

    Wang P Y, Yu G D, Zhang Z Y. On the secrecy capacity of fading wireless channel with multiple eavesdroppers. In: Proceedings of IEEE International Symposium on Information Theory, Nice, 2007. 1301–1305

  6. 6

    Bloch M, Barros J, Rodrigues M R D, et al. Wireless information-theoretic security. IEEE Trans Inform Theor, 2008, 54: 2515–2534

    MathSciNet  Article  Google Scholar 

  7. 7

    Xu X M, Yang W W, Cai Y M, et al. On the secure spectral-energy efficiency tradeoff in random cognitive radio networks. IEEE J Sel Areas Commun, 2016, 34: 2706–2722

    Article  Google Scholar 

  8. 8

    Zheng T X, Wang H M, Liu F, et al. Outage constrained secrecy throughput maximization for DF relay networks. IEEE Trans Commun, 2015, 63: 1741–1755

    Article  Google Scholar 

  9. 9

    Monteiro M E P, Rebelatto J L, Souza R D, et al. Maximum secrecy throughput of transmit antenna selection with eavesdropper outage constraints. IEEE Signal Process Lett, 2015, 22: 2069–2072

    Article  Google Scholar 

  10. 10

    Yan S H, Yang N, Geraci G, et al. Optimization of code rates in SISOME wiretap channels. IEEE Trans Wirel Commun, 2015, 14: 6377–6388

    Article  Google Scholar 

  11. 11

    Dong Y J, Hossain M J, Cheng J L, et al. Dynamic cross-layer beamforming in hybrid powered communication systems with harvest-use-trade strategy. IEEE Trans Wirel Commun, 2017, 16: 8011–8025

    Article  Google Scholar 

  12. 12

    Goel S, Negi R. Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun, 2008, 7: 2180–2189

    Article  Google Scholar 

  13. 13

    Zhou F H, Li Z, Cheng J L, et al. Robust AN-aided beamforming and power splitting design for secure MISO cognitive radio with SWIPT. IEEE Trans Wirel Commun, 2017, 16: 2450–2464

    Article  Google Scholar 

  14. 14

    Liu S Y, Hong Y, Viterbo E. Guaranteeing positive secrecy capacity for MIMOME wiretap channels with finite-rate feedback using artificial noise. IEEE Trans Wirel Commun, 2015, 14: 4193–4203

    Article  Google Scholar 

  15. 15

    Zhang S, Xu X M, Wang H M, et al. Enhancing the physical layer security of uplink non-orthogonal multiple access in cellular Internet of things. IEEE Access, 2018, 6: 58405–58417

    Article  Google Scholar 

  16. 16

    Chen Y J, Ji X S, Huang K Z, et al. Opportunistic access control for enhancing security in D2D-enabled cellular networks. Sci China Inf Sci, 2018, 61: 042304

    MathSciNet  Article  Google Scholar 

  17. 17

    Wang S Y, Xu X M, Huang K Z, et al. Artificial noise aided hybrid analog-digital beamforming for secure transmission in MIMO millimeter wave relay systems. IEEE Access, 2019, 7: 28597–28606

    Article  Google Scholar 

  18. 18

    Chen Y J, Ji X S, Huang K Z, et al. Artificial noise-assisted physical layer security in D2D-enabled cellular networks. J Wirel Commun Netw, 2017, 2017: 178

    Article  Google Scholar 

  19. 19

    Zou Y L, Zhu J, Wang X B, et al. Improving physical-layer security in wireless communications using diversity techniques. IEEE Netw, 2015, 29: 42–48

    Article  Google Scholar 

  20. 20

    Wu Y, Olawoyin L A, Zhang N N, et al. The analysis of secure HARQ with chase combining over block fading channel. China Commun, 2016, 13: 82–88

    Article  Google Scholar 

  21. 21

    Tang X J, Liu R H, Spasojevic P, et al. On the throughput of secure hybrid-ARQ protocols for Gaussian block-fading channels. IEEE Trans Inform Theor, 2009, 55: 1575–1591

    MathSciNet  Article  Google Scholar 

  22. 22

    Mheich Z, Le Treust M, Alberge F, et al. Rate-adaptive secure HARQ protocol for block-fading channels. In: Proceedings of the 22nd European Signal Processing Conference, Lisbon, 2014. 830–834

  23. 23

    Le Treust M, Szczecinski L, Labeau F. Rate adaptation for secure HARQ protocols. IEEE Trans Inform Forensic Secur, 2018, 13: 2981–2994

    Article  Google Scholar 

  24. 24

    Lagrange X. Throughput of HARQ protocols on a block fading channel. IEEE Commun Lett, 2010, 14: 257–259

    Article  Google Scholar 

  25. 25

    Guan X R, Cai Y M, Yang W W. On the reliability-security tradeoff and secrecy throughput in cooperative ARQ. IEEE Commun Lett, 2014, 18: 479–482

    Article  Google Scholar 

  26. 26

    Zorzi M, Rao R R. On the use of renewal theory in the analysis of ARQ protocols. IEEE Trans Commun, 1996, 44: 1077–1081

    Article  Google Scholar 

  27. 27

    Caire G, Tuninetti D. The throughput of hybrid-ARQ protocols for the Gaussian collision channel. IEEE Trans Inform Theor, 2001, 47: 1971–1988

    MathSciNet  Article  Google Scholar 

  28. 28

    Steven B, Lieven V. Convex Optimization. Cambridge: Cambridge University Press, 2004

    Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant No. 61673049) and Natural Science Foundation of the Higher Education Institutions of Anhui Province (Grant No. KJ2018A0441).

Author information



Corresponding author

Correspondence to Yue Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yin, S., Zhou, J. et al. Quasi-concave optimization of secrecy redundancy rate in HARQ-CC system. Sci. China Inf. Sci. 63, 122303 (2020). https://doi.org/10.1007/s11432-019-2660-3

Download citation


  • physical layer security (PLS)
  • hybrid automatic repeat request (HARQ)
  • chase combining (CC)
  • effective secrecy throughput (EST)
  • quasi-concave optimization