Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides

  • 183 Accesses


Two-dimensional layered materials (2DLMs) have triggered a broad research thrust over the last decade worldwide. Different from the gapless graphene, transition metal dichalcogenides (TMDs) exhibit versatile bandstructure, with bandgap sizes ranging from semi-metallic to over 2 eV. Therefore, 2D-TMDs can be utilized in various applications from logic to optoelectronic devices. In this review we first introduce the latest developments of the wafer-scale synthesis of continuous TMD films, then we present recent advances in large scale devices and circuits based on TMD films, including logic, memory, optoelectronic and analog devices. We also provide a perspective and a look at the future device applications based on wafer-scale 2D-TMDs.


  1. 1

    Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042

  2. 2

    Chhowalla M, Liu Z F, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev, 2015, 44: 2584–2586

  3. 3

    Wang F K, Zhang Y, Gao Y, et al. 2D metal chalcogenides for IR photodetection. Small, 2019, 15: 1901347

  4. 4

    Cai Z Y, Liu B, Zou X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133

  5. 5

    Xie C, Mak C, Tao X M, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27: 1603886

  6. 6

    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6: 147–150

  7. 7

    Butler S Z, Hollen S M, Cao L Y, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898–2926

  8. 8

    Yu L L, El-Damak D, Radhakrishna U, et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett, 2016, 16: 6349–6356

  9. 9

    Wachter S, Polyushkin D K, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8: 14948

  10. 10

    Liu C S, Yan X, Song X F, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 2018, 13: 404–410

  11. 11

    Liu C S, Chen H W, Hou X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotechnol, 2019, 14: 662–667

  12. 12

    Lan Y W, Chen P C, Lin Y Y, et al. Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors. Nanoscale Horiz, 2019, 4: 683–688

  13. 13

    Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275

  14. 14

    Shivayogimath A, Thomsen J D, Mackenzie D M A, et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat Commun, 2019, 10: 2957

  15. 15

    Wang Y L, Li L F, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 2015, 15: 4013–4018

  16. 16

    He Q Y, Li P J, Wu Z H, et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv Mater, 2019, 349: 1901578

  17. 17

    Ciarrocchi A, Avsar A, Ovchinnikov D, et al. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat Commun, 2018, 9: 919

  18. 18

    Baugher B W H, Churchill H O H, Yang Y, et al. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett, 2013, 13: 4212–4216

  19. 19

    Li H, Wu J, Yin Z Y, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47: 1067–1075

  20. 20

    Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805

  21. 21

    Zhang Y, Ye J, Matsuhashi Y, et al. Ambipolar MoS2 thin flake transistors. Nano Lett, 2012, 12: 1136–1140

  22. 22

    Martin S J, Walker A B, Campbell A J, et al. Electrical transport characteristics of single-layer organic devices from theory and experiment. J Appl Phys, 2005, 98: 063709

  23. 23

    Qian X F, Liu J W, Fu L, et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346: 1344–1347

  24. 24

    Li D, Chen M Y, Sun Z Z, et al. Two-dimensional non-volatile programmable p-n junctions. Nat Nanotechnol, 2017, 12: 901–906

  25. 25

    Gao Y, Liu Z B, Sun D M, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun, 2015, 6: 8569

  26. 26

    Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320–2325

  27. 27

    Xu H, Zhang H M, Guo Z X, et al. High-performance wafer-scale MoS2 transistors toward practical application. Small, 2018, 14: 1803465

  28. 28

    Xu H, Zhang H M, Liu Y W, et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv Funct Mater, 2019, 29: 1805614

  29. 29

    Fu D Y, Zhao X X, Zhang Y Y, et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J Am Chem Soc, 2017, 139: 9392–9400

  30. 30

    Poh S M, Zhao X, Tan S J R, et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano, 2018, 12: 7562–7570

  31. 31

    Nakano M, Wang Y, Kashiwabara Y, et al. Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy. Nano Lett, 2017, 17: 5595–5599

  32. 32

    Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520: 656–660

  33. 33

    Zhang X T, Choudhury T H, Chubarov M, et al. Diffusion-controlled epitaxy of large area coalesced WSe2 Monolayers on sapphire. Nano Lett, 2018, 18: 1049–1056

  34. 34

    Song J G, Park J, Lee W, et al. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano, 2013, 7: 11333–11340

  35. 35

    Shi M L, Chen L, Zhang T B, et al. Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small, 2017, 13: 1603157

  36. 36

    Yang P F, Zou X L, Zhang Z P, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun, 2018, 9: 979

  37. 37

    Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216–226

  38. 38

    Gong C H, Hu K, Wang X P, et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv Funct Mater, 2018, 28: 1706559

  39. 39

    Xia F N, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photon, 2014, 8: 899–907

  40. 40

    Huo N J, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors. Adv Mater, 2018, 30: 1801164

  41. 41

    Lei S, Wen F, Li B, et al. Optoelectronic memory using two-dimensional materials. Nano Lett, 2015, 15: 259–265

  42. 42

    Kshirsagar C U, Xu W C, Su Y, et al. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano, 2016, 10: 8457–8464

  43. 43

    Zhang E, Wang W Y, Zhang C, et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano, 2015, 9: 612–619

  44. 44

    Wang X D, Liu C S, Chen Y, et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater, 2017, 4: 025036

  45. 45

    Wang H, Yu L L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12: 4674–4680

  46. 46

    Lee Y, Park S, Kim H, et al. Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale, 2015, 7: 11909–11914

  47. 47

    van der Zande A M, Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013, 12: 554–561

  48. 48

    Yu H, Liao M Z, Zhao W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11: 12001–12007

  49. 49

    Karvonen L, Säynätjoki A, Huttunen M J, et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat Commun, 2017, 8: 15714

  50. 50

    Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013, 12: 754–759

  51. 51

    Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5: 5246

  52. 52

    Fei L F, Lei S J, Zhang W B, et al. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat Commun, 2016, 7: 12206

  53. 53

    Smithe K K H, Suryavanshi S, Rojo M M, et al. Low variability in synthetic monolayer MoS2 devices. ACS Nano, 2017, 11: 8456–8463

  54. 54

    Ling X, Lee Y H, Lin Y X, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett, 2014, 14: 464–472

  55. 55

    Lim Y R, Song W, Han J K, et al. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv Mater, 2016, 28: 5025–5030

  56. 56

    Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2014, 8: 923–930

  57. 57

    Bao W Z, Cai X H, Kim D H, et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl Phys Lett, 2013, 102: 042104

  58. 58

    Kobayashi Y, Sasaki S, Mori S, et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano, 2015, 9: 4056–4063

  59. 59

    Tarasov A, Campbell P M, Tsai M Y, et al. Highly uniform trilayer molybdenum disulfide for wafer-scale device fabrication. Adv Funct Mater, 2014, 24: 6389–6400

  60. 60

    Lin Y C, Zhang W J, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4: 6637–6641

  61. 61

    Zhang Q, Wang X F, Shen S H, et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat Electron, 2019, 2: 164–170

  62. 62

    Song X F, Zan W, Xu H, et al. A novel synthesis method for large-area MoS2 film with improved electrical contact. 2D Mater, 2017, 4: 025051

  63. 63

    Luisier M, Lundstrom M, Antoniadis D A, et al. Ultimate device scaling: intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length. In: Proceedings of International Electron Devices Meeting, 2011

  64. 64

    Low T, Li M F, Samudra G, et al. Modeling study of the impact of surface roughness on silicon and germanium UTB MOSFETs. IEEE Trans Electron Device, 2005, 52: 2430–2439

  65. 65

    Yu X, Kang J, Takenaka M, et al. Evaluation of mobility degradation factors and performance improvement of ultrathin-body germanium-on-insulator MOSFETs by GOI thinning using plasma oxidation. IEEE Trans Electron Device, 2017, 64: 1418–1425

  66. 66

    Jin S, Fischetti M V, Tang T W. Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Trans Electron Device, 2007, 54: 2191–2203

  67. 67

    Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9: 768–779

  68. 68

    Thiele S, Kinberger W, Granzner R, et al. The prospects of transition metal dichalcogenides for ultimately scaled CMOS. Solid-State Electron, 2018, 143: 2–9

  69. 69

    Cao W, Jiang J K, Xie X J, et al. 2-D layered materials for next-generation electronics: opportunities and challenges. IEEE Trans Electron Device, 2018, 65: 4109–4121

  70. 70

    Song X F, Guo Z X, Zhang Q C, et al. Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides. Small, 2017, 13: 1700098

  71. 71

    Lemme M C, Li L J, Palacios T, et al. Two-dimensional materials for electronic applications. MRS Bull, 2014, 39: 711–718

  72. 72

    Kwon H, Jeon P J, Kim J S, et al. Large scale MoS2 nanosheet logic circuits integrated by photolithography on glass. 2D Mater, 2016, 3: 044001

  73. 73

    Yu L, Zubair A, Santos E J G, et al. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett, 2015, 15: 4928–4934

  74. 74

    Sachid A B, Tosun M, Desai S B, et al. Monolithic 3D CMOS using layered semiconductors. Adv Mater, 2016, 28: 2547–2554

  75. 75

    Liu Y D, Ang K W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano, 2017, 11: 7416–7423

  76. 76

    Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102

  77. 77

    Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14: 1195–1205

  78. 78

    Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2013, 13: 100–105

  79. 79

    Yu L L, Lee Y H, Ling X, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett, 2014, 14: 3055–3063

  80. 80

    Kappera R, Voiry D, Yalcin S E, et al. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater, 2014, 2: 092516

  81. 81

    Lee S, Tang A, Aloni S, et al. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett, 2016, 16: 276–281

  82. 82

    Hu Z H, Wu Z T, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev, 2018, 47: 3100–3128

  83. 83

    Kim H G, Lee H B R. Atomic layer deposition on 2D materials. Chem Mater, 2017, 29: 3809–3826

  84. 84

    McDonnell S, Brennan B, Azcatl A, et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano, 2013, 7: 10354–10361

  85. 85

    Zou X M, Wang J L, Chiu C H, et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv Mater, 2014, 26: 6255–6261

  86. 86

    Yang W, Sun Q Q, Geng Y, et al. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci Rep, 2015, 5: 11921

  87. 87

    Azcatl A, McDonnell S, Kc S, et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl Phys Lett, 2014, 104: 111601

  88. 88

    Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12: 4013–4017

  89. 89

    Pu J, Funahashi K, Chen C H, et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv Mater, 2016, 28: 4111–4119

  90. 90

    Dathbun A, Kim Y, Kim S, et al. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett, 2017, 17: 2999–3005

  91. 91

    Zan W, Zhang Q C, Xu H, et al. Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices. Nano Res, 2018, 11: 3739–3745

  92. 92

    Li S L, Tsukagoshi K, Orgiu E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem Soc Rev, 2016, 45: 118–151

  93. 93

    Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial fermi level pinning at metal-MoS2 interfaces. Nano Lett, 2014, 14: 1714–1720

  94. 94

    Kang J H, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4: 031005

  95. 95

    Ma N, Jena D. Charge scattering and mobility in atomically thin semiconductors. Phys Rev X, 2014, 4: 011043

  96. 96

    Schwierz F. Graphene transistors: status, prospects, and problems. Proc IEEE, 2013, 101: 1567–1584

  97. 97

    Amani M, Burke R A, Proie R M, et al. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology, 2015, 26: 115202

  98. 98

    Zhang T B, Liu H, Wang Y, et al. Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition. Phys Status Solidi RRL, 2019, 13: 1900018

  99. 99

    Zhang S M, Xu H, Liao F Y, et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology, 2019, 30: 174002

  100. 100

    Das T, Chen X, Jang H, et al. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small, 2016, 12: 5720–5727

  101. 101

    Chiu M H, Tang H L, Tseng C C, et al. Metal-guided selective growth of 2D materials: demonstration of a bottom-up CMOS inverter. Adv Mater, 2019, 31: 1900861

  102. 102

    Liu W, Kang J H, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett, 2013, 13: 1983–1990

  103. 103

    Tosun M, Chuang S, Fang H, et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano, 2014, 8: 4948–4953

  104. 104

    Lin Z Y, Liu Y, Halim U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562: 254–258

  105. 105

    Yu L, El-Damak D, Ha S, et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015

  106. 106

    Yang R, Li H, Smithe K K H, et al. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat Electron, 2019, 2: 108–114

  107. 107

    Liu J Q, Zeng Z Y, Cao X H, et al. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small, 2012, 8: 3517–3522

  108. 108

    Huang X, Zheng B, Liu Z D, et al. Coating two-dimensional nanomaterials with metal-organic frameworks. ACS Nano, 2014, 8: 8695–8701

  109. 109

    Yin Z Y, Zeng Z Y, Liu J Q, et al. Memory devices using a mixture of MoS2 and graphene oxide as the active layer. Small, 2013, 9: 727–731

  110. 110

    Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501

  111. 111

    Huo N, Konstantatos G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat Commun, 2017, 8: 572

  112. 112

    Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699–712

  113. 113

    Chang Y H, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8: 8582–8590

  114. 114

    Zhou Y H, An H N, Gao C, et al. UV-Vis-NIR photodetector based on monolayer MoS2. Mater Lett, 2019, 237: 298–302

  115. 115

    Xue Y Z, Zhang Y P, Liu Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10: 573–580

  116. 116

    Kim Y, Bark H, Kang B, et al. Wafer-scale substitutional doping of monolayer MoS2 films for high-performance optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11: 12613–12621

  117. 117

    Agarwal A, Lang J. Foundations of Analog and Digital Electronic Circuits. Amsterdam: Elsevier 2005

  118. 118

    Cheng R, Bai J W, Liao L, et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci USA, 2012, 109: 11588–11592

  119. 119

    Sanne A, Ghosh R, Rai A, et al. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett, 2015, 15: 5039–5045

  120. 120

    Chang H Y, Yogeesh M N, Ghosh R, et al. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv Mater, 2016, 28: 1818–1823

  121. 121

    Gao Q G, Zhang Z F, Xu X L, et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat Commun, 2018, 9: 4778

Download references


This work was supported by National Key Research and Development Program (Grant No. 2016-YFA0203900), Shanghai Municipal Science and Technology Commission (Grant No. 18JC1410300), and National Natural Science Foundation of China (Grant No. 61874154).

Author information

Correspondence to Wenzhong Bao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhang, H., Chen, X. et al. Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides. Sci. China Inf. Sci. 62, 220401 (2019). https://doi.org/10.1007/s11432-019-2651-x

Download citation


  • two-dimensional layered materials
  • transition metal dichalcogenides
  • field effect transistors
  • wafer-scale