The emerging ferroic orderings in two dimensions

Abstract

Because of the discovery of carbon atomic flat land, emerging physical phenomena are reported using the platform of two-dimensional materials and their hetero-structures. Especially, quantum orderings, such as superconductivity, ferromagnetism, and ferroelectricity in the atomically thin limit are cutting edge topics, which are of broad interest in the scope of condensed matter physics. In this study, we will recall the recent developments on two-dimensional ferroic orderings from both experimental and theoretical points of view. The booming of ferroic orderings in van der Waals two-dimensional materials are believed to hold promises for the next generation spin- or dipole-related nanoelectronics, because they can be seamlessly interfaced into heterostructures, and in principle are in line with large scale low-cost growth, flexible wearable devices, as well as semiconducting electronics thanks to the existence of band gaps in many of them.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Jiang X T, Liu S X, Liang W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev, 2018, 12: 1700229

    Article  Google Scholar 

  2. 2

    Lu L, Liang Z M, Wu L M, et al. Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev, 2018, 12: 1700221

    Article  Google Scholar 

  3. 3

    Mu H R, Wang Z T, Yuan J, et al. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics, 2015, 2: 832–841

    Article  Google Scholar 

  4. 4

    Lu L, Tang X, Cao R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability. Adv Opt Mater, 2017, 5: 1700301

    Article  Google Scholar 

  5. 5

    Jiang Y Q, Miao L L, Jiang G B, et al. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci Rep, 2015, 5: 16372

    Article  Google Scholar 

  6. 6

    Xing C Y, Jing G H, Liang X, et al. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale, 2017, 9: 8096–8101

    Article  Google Scholar 

  7. 7

    Zibouche N, Philipsen P, Kuc A, et al. Transition-metal dichalcogenide bilayers: Switching materials for spintronic and valleytronic applications. Phys Rev B, 2014, 90: 125440

    Article  Google Scholar 

  8. 8

    Xiao D, Liu G B, Feng W, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 2012, 108: 196802

    Article  Google Scholar 

  9. 9

    Schaibley J R, Yu H, Clark G, et al. Valleytronics in 2D materials. Nat Rev Mater, 2016, 1: 16055

    Article  Google Scholar 

  10. 10

    Sun Z B, Zhao Y T, Li Z B, et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small, 2017, 13: 1602896

    Article  Google Scholar 

  11. 11

    Xie H H, Li Z B, Sun Z B, et al. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small, 2016, 12: 4136–4145

    Article  Google Scholar 

  12. 12

    Qi J, Lan Y W, Stieg A Z, et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat Commun, 2015, 6: 7430

    Article  Google Scholar 

  13. 13

    Li F, Qi J J, Xu M X, et al. Layer dependence and light tuning surface potential of 2D MoS2 on various substrates. Small, 2017, 13: 1603103

    Article  Google Scholar 

  14. 14

    Ren X H, Zhou J, Qi X, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv Energy Mater, 2017, 7: 1700396

    Article  Google Scholar 

  15. 15

    Wang T, Guo Y L, Wan P B, et al. Flexible transparent electronic gas sensors. Small, 2016, 12: 3748–3756

    Article  Google Scholar 

  16. 16

    Xu C, Wang L B, Liu Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater, 2015, 14: 1135–1141

    Article  Google Scholar 

  17. 17

    Liu Y, Weiss N O, Duan X D, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042

    Article  Google Scholar 

  18. 18

    Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439

    Article  Google Scholar 

  19. 19

    Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033

    Article  Google Scholar 

  20. 20

    Hu J M, Chen L Q, Nan C W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater, 2016, 28: 15–39

    Article  Google Scholar 

  21. 21

    Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363: eaav4450

    Article  Google Scholar 

  22. 22

    Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14: 408–419

    Article  Google Scholar 

  23. 23

    Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett, 1966, 17: 1133–1136

    Article  Google Scholar 

  24. 24

    Stanley H E, Kaplan T A. Possibility of a phase transition for the two-dimensional heisenberg model. Phys Rev Lett, 1966, 17: 913–915

    Article  Google Scholar 

  25. 25

    Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C-Solid State Phys, 1973, 6: 1181–1203

    Article  Google Scholar 

  26. 26

    Berezinskii V L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. classical systems. J Exp Theor Phys, 1971, 32: 493

    MathSciNet  Google Scholar 

  27. 27

    Fröhlich J, Lieb E H. Existence of phase transitions for anisotropic heisenberg models. Phys Rev Lett, 1977, 38: 440–442

    Article  Google Scholar 

  28. 28

    Mohn P. Magnetism in the Solid State: An Introduction. Berlin: Springer, 2005

    Google Scholar 

  29. 29

    Blundell S. Magnetism in Condensed Matter. Oxford: Oxford University Press, 2001

    Google Scholar 

  30. 30

    Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273

    Article  Google Scholar 

  31. 31

    Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269

    Article  Google Scholar 

  32. 32

    Wang Z, Zhang T Y, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotech, 2018, 13: 554–559

    Article  Google Scholar 

  33. 33

    Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556: 80–84

    Article  Google Scholar 

  34. 34

    Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater, 2018, 17: 778–782

    Article  Google Scholar 

  35. 35

    Samarth N. Condensed-matter physics: magnetism in flatland. Nature, 2017, 546: 216–218

    Article  Google Scholar 

  36. 36

    Tsubokawa I. On the magnetic properties of a CrBr3 single crystal. J Phys Soc Jpn, 1960, 15: 1664–1668

    Article  Google Scholar 

  37. 37

    Hansen W N. Some magnetic properties of the chromium (III) halides at 42 K. J Appl Phys, 1959, 30: S304

    Article  Google Scholar 

  38. 38

    Starr C, Bitter F, Kaufmann A R. The magnetic properties of the iron group anhydrous chlorides at low temperatures. I. experimental. Phys Rev, 1940, 58: 977–983

    MATH  Article  Google Scholar 

  39. 39

    Hansen W N, Griffel M. Heat capacities of CrF3 and CrCl3 from 15 to 300°K. J Chem Phys, 1958, 28: 902–907

    Article  Google Scholar 

  40. 40

    Cable J W, Wilkinson M K, Wollan E O. Neutron diffraction investigation of antiferromagnetism in CrCl3. J Phys Chem Solids, 1961, 19: 29–34

    Article  Google Scholar 

  41. 41

    McGuire M A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals, 2017, 7: 121

    Article  Google Scholar 

  42. 42

    Carteaux V, Moussa F, Spiesser M. 2D ising-like ferromagnetic behaviour for the lamellar Cr2Si2Te6 compound: a neutron scattering investigation. Europhys Lett, 1995, 29: 251–256

    Article  Google Scholar 

  43. 43

    Ouvrard G, Brec R, Rouxel J. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater Res Bull, 1985, 20: 1181–1189

    Article  Google Scholar 

  44. 44

    Taylor B, Steger J, Wold A, et al. Preparation and properties of iron phosphorus triselenide, FePSe3. Inorg Chem, 1974, 13: 2719–2721

    Article  Google Scholar 

  45. 45

    Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4: 035002

    Article  Google Scholar 

  46. 46

    Ji H, Stokes R A, Alegria L D, et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J Appl Phys, 2013, 114: 114907

    Article  Google Scholar 

  47. 47

    Brec R. Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3. In: Intercalation in Layered Materials. Boston: Springer, 1986. 148: 93–124

    Google Scholar 

  48. 48

    Wildes A R, Simonet V, Ressouche E, et al. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J Phys-Condens Matter, 2017, 29: 455801

    Article  Google Scholar 

  49. 49

    Joy P A, Vasudevan S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys Rev B, 1992, 46: 5425–5433

    Article  Google Scholar 

  50. 50

    Kurosawa K, Saito S, Yamaguchi Y. Neutron diffraction study on MnPS3 and FePS3. J Phys Soc Jpn, 1983, 52: 3919–3926

    Article  Google Scholar 

  51. 51

    Deng Y J, Yu Y J, Song Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563: 94–99

    Article  Google Scholar 

  52. 52

    Nozaki H, Umehara M, Ishizawa Y, et al. Magnetic properties of V5S8 single crystals. J Phys Chem Solids, 1978, 39: 851–858

    Article  Google Scholar 

  53. 53

    Niu J J, Yan B M, Ji Q Q, et al. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys Rev B, 2017, 96: 075402

    Article  Google Scholar 

  54. 54

    Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotech, 2018, 13: 289–293

    Article  Google Scholar 

  55. 55

    Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci USA, 2018, 115: 8511–8516

    Article  Google Scholar 

  56. 56

    Arai M, Moriya R, Yabuki N, et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl Phys Lett, 2015, 107: 103107

    Article  Google Scholar 

  57. 57

    Wang X, Tang J, Xia X, et al. Current driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. 2019. ArXiv: 190205794v1

  58. 58

    Wang Z, Sapkota D, Taniguchi T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett, 2018, 18: 4303–4308

    Article  Google Scholar 

  59. 59

    Handy L L, Gregory N W. Structural properties of chromium (III) iodide and some chromium (III) mixed halides. J Am Chem Soc, 1952, 74: 891–893

    Article  Google Scholar 

  60. 60

    Morosin B, Narath A. X-ray diffraction and nuclear quadrupole resonance studies of chromium trichloride. J Chem Phys, 1964, 40: 1958–1967

    Article  Google Scholar 

  61. 61

    Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotech, 2018, 13: 544–548

    Article  Google Scholar 

  62. 62

    Ghazaryan D, Greenaway M T, Wang Z, et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat Electron, 2018, 1: 344–349

    Article  Google Scholar 

  63. 63

    Zhang W B, Qu Q, Zhu P, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C, 2015, 3: 12457–12468

    Article  Google Scholar 

  64. 64

    Dillon Jr J F, Kamimura H, Remeika J P. Magneto-optical properties of ferromagnetic chromium trihalides. J Phys Chem Solids, 1966, 27: 1531–1549

    Article  Google Scholar 

  65. 65

    Wang H, Eyert V, Schwingenschlögl U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J Phys-Condens Matter, 2011, 23: 116003

    Article  Google Scholar 

  66. 66

    Wang H B, Fan F R, Zhu S S, et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL, 2016, 114: 47001

    Article  Google Scholar 

  67. 67

    Sivadas N, Okamoto S, Xu X, et al. Stacking-dependent magnetism in bilayer CrI3. Nano Lett, 2018, 18: 7658–7664

    Article  Google Scholar 

  68. 68

    Webster L, Yan J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 2018, 98: 144411

    Article  Google Scholar 

  69. 69

    Zheng F W, Zhao J Z, Liu Z, et al. Tunable spin states in the two-dimensional magnet CrI3. Nanoscale, 2018, 10: 14298–14303

    Article  Google Scholar 

  70. 70

    McGuire M A, Dixit H, Cooper V R, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater, 2015, 27: 612–620

    Article  Google Scholar 

  71. 71

    Song T, Cai X, Tu M W Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360: 1214–1218

    Article  Google Scholar 

  72. 72

    Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 2018, 9: 2516

    Article  Google Scholar 

  73. 73

    Klein D R, MacNeill D, Lado J L, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360: 1218–1222

    Article  Google Scholar 

  74. 74

    Jiang S W, Li L Z, Wang Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotech, 2018, 13: 549–553

    Article  Google Scholar 

  75. 75

    Jiang S W, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17: 406–410

    Article  Google Scholar 

  76. 76

    Valenzuela S O, Roche S. A barrier to spin filters. Nat Electron, 2018, 1: 328–329

    Article  Google Scholar 

  77. 77

    Richter N, Weber D, Martin F, et al. Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors CrI3 and CrBr3. Phys Rev Mater, 2018, 2: 024004

    Article  Google Scholar 

  78. 78

    Yu X Y, Zhang X, Shi Q, et al. Large magnetocaloric effect in van der Waals crystal CrBr3. Front Phys, 2019, 14: 43501

    Article  Google Scholar 

  79. 79

    Thompson S E, Parthasarathy S. Moore’s law: the future of Si microelectronics. Mater Today, 2006, 9: 20–25

    Article  Google Scholar 

  80. 80

    Story T, Gałązka R R, Frankel R B, et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 1986, 56: 777–779

    Article  Google Scholar 

  81. 81

    Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408: 944–946

    Article  Google Scholar 

  82. 82

    Sivadas N, Daniels M W, Swendsen R H, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B, 2015, 91: 235425

    Article  Google Scholar 

  83. 83

    Xing W Y, Chen Y Y, Odenthal P M, et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater, 2017, 4: 024009

    Article  Google Scholar 

  84. 84

    Carteaux V, Brunet D, Ouvrard G, et al. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J Phys-Condens Matter, 1995, 7: 69–87

    Article  Google Scholar 

  85. 85

    Zhang X, Zhao Y L, Song Q, et al. Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2Ge2Te6. Jpn J Appl Phys, 2016, 55: 033001

    Article  Google Scholar 

  86. 86

    Tian Y, Gray M J, Ji H W, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater, 2016, 3: 025035

    Article  Google Scholar 

  87. 87

    Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with giant anomalous Hall effect in two-dimensional Cr2Ge2Te6. 2019. ArXiv: 190109306

  88. 88

    Wang K Y, Hu T, Jia F H, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 2019, 114: 092405

    Article  Google Scholar 

  89. 89

    Xie L, Guo L, Yu W Z, et al. Ultrasensitive negative photoresponse in 2D Cr2Ge2Te6 photodetector with light-induced carrier trapping. Nanotechnology, 2018, 29: 464002

    Article  Google Scholar 

  90. 90

    He J J, Ding G Q, Zhong C Y, et al. Remarkably enhanced ferromagnetism in a super-exchange governed Cr2Ge2Te6 monolayer via molecular adsorption. J Mater Chem C, 2019, 7: 5084–5093

    Article  Google Scholar 

  91. 91

    Lohmann M, Su T, Niu B, et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous Hall effect in Pt. Nano Lett, 2019, 19: 2397–2403

    Article  Google Scholar 

  92. 92

    Miao N H, Xu B, Zhu L G, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140: 2417–2420

    Article  Google Scholar 

  93. 93

    Lançon D, Ewings R A, Guidi T, et al. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys Rev B, 2018, 98: 134414

    Article  Google Scholar 

  94. 94

    ur Rehman Z, Muhammad Z, Adetunji Moses O, et al. Magnetic isotropy/anisotropy in layered metal phosphorous trichalcogenide MPS3 (M = Mn, Fe) single crystals. Micromachines, 2018, 9: 292

    Article  Google Scholar 

  95. 95

    Haines C R S, Coak M J, Wildes A R, et al. Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS3. Phys Rev Lett, 2018, 121: 266801

    Article  Google Scholar 

  96. 96

    Kim K, Lim S Y, Lee J U, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun, 2019, 10: 345

    Article  Google Scholar 

  97. 97

    Qi J S, Wang H, Chen X F, et al. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl Phys Lett, 2018, 113: 043102

    Article  Google Scholar 

  98. 98

    Cai L, He J F, Liu Q H, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc, 2015, 137: 2622–2627

    Article  Google Scholar 

  99. 99

    Feng S M, Lin Z, Gan X, et al. Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horiz, 2017, 2: 72–80

    Article  Google Scholar 

  100. 100

    Cheng Y C, Zhu Z Y, Mi W B, et al. Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys Rev B, 2013, 87: 100401

    Article  Google Scholar 

  101. 101

    Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys Rev B, 2013, 87: 195201

    Article  Google Scholar 

  102. 102

    Fan X L, An Y R, Guo W J. Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res Lett, 2016, 11: 154

    Article  Google Scholar 

  103. 103

    Xia B R, Guo Q, Gao D Q, et al. High temperature ferromagnetism in Cu-doped MoS2 nanosheets. J Phys D-Appl Phys, 2016, 49: 165003

    Article  Google Scholar 

  104. 104

    Wang Y, Tseng L T, Murmu P P, et al. Defects engineering induced room temperature ferromagnetism in transition metal doped MoS2. Mater Des, 2017, 121: 77–84

    Article  Google Scholar 

  105. 105

    Li B, Xing T, Zhong M Z, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8: 1958

    Article  Google Scholar 

  106. 106

    Radhakrishnan S, Das D, Samanta A, et al. Fluorinated h-BN as a magnetic semiconductor. Sci Adv, 2017, 3: e1700842

    Article  Google Scholar 

  107. 107

    Jiang P H, Li L, Liao Z L, et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett, 2018, 18: 3844–3849

    Article  Google Scholar 

  108. 108

    O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18: 3125–3131

    Article  Google Scholar 

  109. 109

    Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotech, 2018, 13: 246–252

    Article  Google Scholar 

  110. 110

    Freitas D C, Weht R, Sulpice A, et al. Ferromagnetism in layered metastable 1T-CrTe2. J Phys-Condens Matter, 2015, 27: 176002

    Article  Google Scholar 

  111. 111

    Lin M W, Zhuang H L, Yan J, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J Mater Chem C, 2016, 4: 315–322

    Article  Google Scholar 

  112. 112

    Kong T, Stolze K, Timmons E I, et al. VI3-a New layered ferromagnetic semiconductor. Adv Mater, 2019, 31: 1808074

    Article  Google Scholar 

  113. 113

    Tong Q J, Liu F, Xiao J, et al. Skyrmions in the Moiré of van der Waals 2D magnets. Nano Lett, 2018, 18: 7194–7199

    Article  Google Scholar 

  114. 114

    Asadi K, de Leeuw D M, de Boer B, et al. Organic non-volatile memories from ferroelectric phase-separated blends. Nat Mater, 2008, 7: 547–550

    Article  Google Scholar 

  115. 115

    Cross L E. Ferroelectric materials for electromechanical transducer applications. Mater Chem Phys, 1996, 43: 108–115

    Article  Google Scholar 

  116. 116

    Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng, 2000, 10: 136–146

    Article  Google Scholar 

  117. 117

    Wang Y, Niranjan M K, Janicka K, et al. Ferroelectric dead layer driven by a polar interface. Phys Rev B, 2010, 82: 094114

    Article  Google Scholar 

  118. 118

    Duan C G, Sabirianov R F, Mei W N, et al. Interface effect on ferroelectricity at the nanoscale. Nano Lett, 2006, 6: 483–487

    Article  Google Scholar 

  119. 119

    Jia C L, Nagarajan V, He J Q, et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat Mater, 2007, 6: 64–69

    Article  Google Scholar 

  120. 120

    Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422: 506–509

    Article  Google Scholar 

  121. 121

    Zhang Y, Li G P, Shimada T, et al. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZrO3 films. Phys Rev B, 2014, 90: 184107

    Article  Google Scholar 

  122. 122

    Kooi B J, Noheda B. Ferroelectric chalcogenides-materials at the edge. Science, 2016, 353: 221–222

    Article  Google Scholar 

  123. 123

    Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274–278

    Article  Google Scholar 

  124. 124

    Liu K, Lu J, Picozzi S, et al. Intrinsic origin of enhancement of ferroelectricity in SnTe ultrathin films. Phys Rev Lett, 2018, 121: 027601

    Article  Google Scholar 

  125. 125

    Yang C, Liu Y Y, Tang G, et al. Non-monotonic thickness dependence of Curie temperature and ferroelectricity in two-dimensional SnTe film. Appl Phys Lett, 2018, 113: 082905

    Article  Google Scholar 

  126. 126

    Maisonneuve V, Cajipe V B, Simon A, et al. Ferrielectric ordering in lamellar CuInP2S6. Phys Rev B, 1997, 56: 10860–10868

    Article  Google Scholar 

  127. 127

    Vysochanskii Y M, Stephanovich V A, Molnar A A, et al. Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6. Phys Rev B, 1998, 58: 9119–9124

    Article  Google Scholar 

  128. 128

    Belianinov A, He Q, Dziaugys A, et al. CuInP2S6 Room temperature layered ferroelectric. Nano Lett, 2015, 15: 3808–3814

    Article  Google Scholar 

  129. 129

    Vasudevan R K, Balke N, Maksymovych P, et al. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Appl Phys Rev, 2017, 4: 021302

    Article  Google Scholar 

  130. 130

    Liu F, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7: 12357

    Article  Google Scholar 

  131. 131

    Si M, Liao P Y, Qiu G, et al. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 2018, 12: 6700–6705

    Article  Google Scholar 

  132. 132

    Lee H, Kang D H, Tran L. Indium selenide (In2Se3) thin film for phase-change memory. Mater Sci Eng-B, 2005, 119: 196–201

    Article  Google Scholar 

  133. 133

    Han G, Chen Z G, Drennan J, et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small, 2014, 10: 2747–2765

    Article  Google Scholar 

  134. 134

    Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3Phototransistors. Nano Lett, 2015, 15: 7853–7858

    Article  Google Scholar 

  135. 135

    Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2 Se3 and other III2-VI3 van der Waals materials. Nat Commun, 2017, 8: 14956

    Article  Google Scholar 

  136. 136

    Ye J, Soeda S, Nakamura Y, et al. Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn J Appl Phys, 1998, 37: 4264–4271

    Article  Google Scholar 

  137. 137

    Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17: 5508–5513

    Article  Google Scholar 

  138. 138

    Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18: 1253–1258

    Article  Google Scholar 

  139. 139

    Xiao J, Zhu H Y, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120: 227601

    Article  Google Scholar 

  140. 140

    Wan S, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 2019, 29: 1808606

    Article  Google Scholar 

  141. 141

    Shi Y G, Guo Y F, Wang X, et al. A ferroelectric-like structural transition in a metal. Nat Mater, 2013, 12: 1024–1027

    Article  Google Scholar 

  142. 142

    Kim T H, Puggioni D, Yuan Y, et al. Polar metals by geometric design. Nature, 2016, 533: 68–72

    Article  Google Scholar 

  143. 143

    Fei Z, Zhao W, Palomaki T A, et al. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560: 336–339

    Article  Google Scholar 

  144. 144

    Keum D H, Cho S, Kim J H, et al. Bandgap opening in few-layered monoclinic MoTe2. Nat Phys, 2015, 11: 482–486

    Article  Google Scholar 

  145. 145

    Qi Y, Naumov P G, Ali M N, et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat Commun, 2016, 7: 11038

    Article  Google Scholar 

  146. 146

    Yuan S, Luo X, Chan H L, et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat Commun, 2019, 10: 1775

    Article  Google Scholar 

  147. 147

    Shirodkar S N, Waghmare U V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett, 2014, 112: 157601

    Article  Google Scholar 

  148. 148

    Fei R X, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys Rev Lett, 2016, 117: 097601

    Article  Google Scholar 

  149. 149

    Wang H, Qian X F. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater, 2017, 4: 015042

    Article  Google Scholar 

  150. 150

    Hanakata P Z, Carvalho A, Campbell D K, et al. Polarization and valley switching in monolayer group-IV monochalcogenides. Phys Rev B, 2016, 94: 035304

    Article  Google Scholar 

  151. 151

    Sçahin H, Cahangirov S, Topsakal M, et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B, 2009, 80: 155453

    Article  Google Scholar 

  152. 152

    Blonsky M N, Zhuang H L, Singh A K, et al. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano, 2015, 9: 9885–9891

    Article  Google Scholar 

  153. 153

    Wu M, Zeng X C. Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett, 2017, 17: 6309–6314

    Article  Google Scholar 

  154. 154

    Wu J X, Yuan H T, Meng M M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotech, 2017, 12: 530–534

    Article  Google Scholar 

  155. 155

    Yoon S M, Song H J, Choi H C. p-type semiconducting GeSe combs by a vaporization-condensation-recrystallization (VCR) process. Adv Mater, 2010, 22: 2164–2167

    Article  Google Scholar 

  156. 156

    Mukherjee B, Cai Y, Tan H R, et al. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl Mater Interfaces, 2013, 5: 9594–9604

    Article  Google Scholar 

  157. 157

    Zhao L D, Lo S H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377

    Article  Google Scholar 

  158. 158

    Guo T F, Ma Z W, Lin G T, et al. Multiple structure and symmetry types in narrow temperature and magnetic field ranges in two-dimensional Cr2Ge2Te6 crystal. 2018. ArXiv: 180306113

  159. 159

    Thiel L, Wang Z, Tschudin M A, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science, 2019, 364: 973–976

    Article  Google Scholar 

  160. 160

    Cheng R Q, Wang F, Yin L, et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat Electron, 2018, 1: 356–361

    Article  Google Scholar 

  161. 161

    Wang F, Wang Z X, Yin L, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem Soc Rev, 2018, 47: 6296–6341

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2017YFA0206302), and National Natural Science Foundation of China (Grant Nos. 11504385, 51627801, 61435010, 51702219, 61975134). Han ZHANG and Yupeng ZHANG acknowledge the support from Science and Technology Innovation Commission of Shenzhen (Grant Nos. JCYJ20170818093453105, JCYJ20180305125345378). Teng YANG acknowledges supports from Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204). Zheng Vitto HAN acknowledges the support from Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201816).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zheng Vitto Han or Teng Yang or Han Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, H., Li, F. et al. The emerging ferroic orderings in two dimensions. Sci. China Inf. Sci. 62, 220402 (2019). https://doi.org/10.1007/s11432-019-2642-6

Download citation

Keywords

  • two-dimensional materials
  • quantum orderings
  • magnetism
  • ferroelectricity
  • nanoelectronics