Skip to main content
Log in

How often should one update control and estimation: review of networked triggering techniques

  • Review
  • Special Focus on Advanced Techniques for Event-Triggered Control and Estimation
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Management of resources is a constant topic in industrial systems. How to use minimum communication resources is of particular interest for control and estimation of networked systems. It raises the question for researchers in the field: how often should one update control and estimation? One of the most intelligent approaches is to trigger updates by events. In the literature, event-triggered control and estimation have been widely studied in the last decade. On one hand, events should be triggered sufficiently frequent to maintain system performance; on the other hand, the possibility of Zeno behavior caused by infinite frequency should be avoided. This review aims at revisiting some existing triggering techniques in a unified formulation, separated from system dynamics and control and estimation strategies. It brings readers better understanding of triggering mechanisms, the underlying technical challenges, and some promising future research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huggett N. Zeno’s paradoxes. The Stanford Encyclopedia of Philosophy, 2010. https://plato.stanford.edu/archives/win2010/entries/paradox-zeno/

    Google Scholar 

  2. Chen T W, Francis B A. Optimal Sampled-Data Control Systems. New York: Springer-Verlag, 1995

    Book  MATH  Google Scholar 

  3. Wang X F, Lemmon M D. Event-triggering in distributed networked control systems. IEEE Trans Automat Contr, 2011, 56: 586–601

    Article  MathSciNet  MATH  Google Scholar 

  4. Dimarogonas D V, Johansson K H. Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control. Automatica, 2010, 46: 695–700

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang X-M, Han Q-L, Yu X H. Survey on recent advances in networked control systems. IEEE Trans Ind Inf, 2016, 12: 1740–1752

    Article  Google Scholar 

  6. Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Automat Contr, 2007, 52: 1680–1685

    Article  MathSciNet  MATH  Google Scholar 

  7. Qin J H, Ma Q C, Shi Y, et al. Recent advances in consensus of multi-agent systems: a brief survey. IEEE Trans Ind Electron, 2017, 64: 4972–4983

    Article  Google Scholar 

  8. Peng C, Li F Q. A survey on recent advances in event-triggered communication and control. Inf Sci, 2018, 457-458: 113–125

    Article  MathSciNet  Google Scholar 

  9. Ge X H, Han Q-L, Zhang X M, et al. Distributed event-triggered estimation over sensor networks: a survey. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2917179

    Google Scholar 

  10. Nowzari C, Garcia E, Cortés J. Event-triggered communication and control of networked systems for multi-agent consensus. Automatica, 2019, 105: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  11. Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Trans Automat Contr, 2012, 57: 1291–1297

    Article  MathSciNet  MATH  Google Scholar 

  12. Dimarogonas D V, Johansson K H. Event-triggered control for multi-agent systems. In: Proceedings of the 48th IEEE Conference on Decision and Control jointly with the 28th Chinese Control Conference, Shanghai, 2009. 7131–7136

    Google Scholar 

  13. Dimarogonas D V, Johansson K H. Event-triggered cooperative control. In: Proceedings of the 2009 European Control Conference, Budapest, 2009. 3015–3020

    Chapter  Google Scholar 

  14. Aström K J, Bernhardsson B. Comparison of periodic and event based sampling for first-order stochastic systems. In: Proceedings of the 14th IFAC World Congress, Beijing, 1999. 301–306

    Google Scholar 

  15. Borgers D P, Heemels W P M H. Event-separation properties of event-triggered control systems. IEEE Trans Automat Contr, 2014, 59: 2644–2656

    Article  MathSciNet  MATH  Google Scholar 

  16. Garcia E, Cao Y C, Yu H, et al. Decentralised event-triggered cooperative control with limited communication. Int J Control, 2013, 86: 1479–1488

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhu W, Jiang Z-P, Feng G. Event-based consensus of multi-agent systems with general linear models. Automatica, 2014, 50: 552–558

    Article  MathSciNet  MATH  Google Scholar 

  18. Xing L T, Wen C Y, Guo F H, et al. Event-based consensus for linear multiagent systems without continuous communication. IEEE Trans Cybern, 2017, 47: 2132–2142

    Article  Google Scholar 

  19. Fan Y, Feng G, Wang Y, et al. Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica, 2013, 49: 671–675

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun Z Y, Huang N, Anderson B D O, et al. Comments on “distributed event-triggered control of multi-agent systems with combinational measurements”. Automatica, 2018, 92: 264–265

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu W F, Liu L, Feng G. Consensus of linear multi-agent systems by distributed event-triggered strategy. IEEE Trans Cybern, 2016, 46: 148–157

    Article  Google Scholar 

  22. Du C K, Liu X D, Liu H K, et al. Distributed event-triggered consensus control for general linear multi-agent systems under directed graph. In: Proceedings of the 56th IEEE Conference on Decision and Control, Melbourne, 2017. 4550–4555

    Google Scholar 

  23. Liu Z X, Chen Z Q, Yuan Z Z. Event-triggered average-consensus of multi-agent systems with weighted and direct topology. J Syst Sci Complex, 2012, 25: 845–855

    Article  MathSciNet  MATH  Google Scholar 

  24. Nowzari C, Cortées J. Distributed event-triggered coordination for average consensus on weight-balanced digraphs. Automatica, 2016, 68: 237–244

    Article  MathSciNet  MATH  Google Scholar 

  25. Seyboth G S, Dimarogonas D V, Johansson K H. Event-based broadcasting for multi-agent average consensus. Automatica, 2013, 49: 245–252

    Article  MathSciNet  MATH  Google Scholar 

  26. Meng X Y, Xie L H, Soh Y C. Asynchronous periodic event-triggered consensus for multi-agent systems. Automatica, 2017, 84: 214–220

    Article  MathSciNet  MATH  Google Scholar 

  27. Girard A. Dynamic triggering mechanisms for event-triggered control. IEEE Trans Automat Contr, 2015, 60: 1992–1997

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun Z, Huang N, Anderson B D, et al. A new distributed zeno-free event-triggered algorithm for multi-agent consensus. In: Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, 2016. 3444–3449

    Google Scholar 

  29. Meng X Y, Chen T W. Event based agreement protocols for multi-agent networks. Automatica, 2013, 49: 2125–2132

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo G, Ding L, Han Q-L. A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. Automatica, 2014, 50: 1489–1496

    Article  MathSciNet  MATH  Google Scholar 

  31. Yue D, Tian E G, Han Q-L. A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans Automat Contr, 2013, 58: 475–481

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang X M, Han Q-L, Zhang B L. An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans Ind Inf, 2017, 13: 4–16

    Article  Google Scholar 

  33. Ding L, Han Q-L, Ge X H, et al. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans Cybern, 2018, 48: 1110–1123

    Article  Google Scholar 

  34. Mazo M, Tabuada P. Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Trans Automat Contr, 2011, 56: 2456–2461

    Article  MathSciNet  MATH  Google Scholar 

  35. Tallapragada P, Chopra N. Decentralized event-triggering for control of nonlinear systems. IEEE Trans Automat Contr, 2014, 59: 3312–3324

    Article  MathSciNet  MATH  Google Scholar 

  36. Fan Y, Liu L, Feng G, et al. Self-triggered consensus for multi-agent systems with zeno-free triggers. IEEE Trans Automat Contr, 2015, 60: 2779–2784

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu W F, Liu L, Feng G. Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy. IEEE Trans Cybern, 2017, 47: 1914–1924

    Article  Google Scholar 

  38. Xu W Y, Ho D W C, Li L L, et al. Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies. IEEE Trans Cybern, 2017, 47: 212–223

    Article  Google Scholar 

  39. Khan G D, Chen Z Y, Yan Y M. Event-triggered output synchronization of heterogeneous nonlinear multi-agents. 2019. ArXiv: 1908.07803

    Google Scholar 

  40. Sijs J, Lazar M. Event based state estimation with time synchronous updates. IEEE Trans Automat Contr, 2012, 57: 2650–2655

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi D W, Chen T W, Shi L. Event-triggered maximum likelihood state estimation. Automatica, 2014, 50: 247–254

    Article  MathSciNet  MATH  Google Scholar 

  42. Han D, Mo Y L, Wu J F, et al. Stochastic event-triggered sensor schedule for remote state estimation. IEEE Trans Automat Contr, 2015, 60: 2661–2675

    Article  MathSciNet  MATH  Google Scholar 

  43. Hu S L, Yue D. Event-based H∞ filtering for networked system with communication delay. Signal Processing, 2012, 92: 2029–2039

    Article  Google Scholar 

  44. Zhang X M, Han Q-L. Event-based H∞ filtering for sampled-data systems. Automatica, 2015, 51: 55–69

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang X-M, Han Q-L, Ge X H, et al. Networked control systems: a survey of trends and techniques. IEEE/CAA J Autom Sin, 2019. doi: 10.1109/JAS.2019.1911651

    Google Scholar 

  46. Ge X H, Han Q-L, Wang Z D. A threshold-parameter-dependent approach to designing distributed event-triggered H∞ consensus filters over sensor networks. IEEE Trans Cybern, 2019, 49: 1148–1159

    Article  Google Scholar 

  47. Wang J, Zhang X M, Han Q-L. Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans Neural Netw Learning Syst, 2016, 27: 77–88

    Article  MathSciNet  Google Scholar 

  48. Zhang X M, Han Q-L. A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans Cybern, 2016, 46: 2745–2757

    Article  Google Scholar 

  49. El Ghaoui L, Calafiore G. Robust filtering for discrete-time systems with bounded noise and parametric uncertainty. IEEE Trans Automat Contr, 2001, 46: 1084–1089

    Article  MathSciNet  MATH  Google Scholar 

  50. Calafiore G. Reliable localization using set-valued nonlinear filters. IEEE Trans Syst Man Cybern A, 2005, 35: 189–197

    Article  Google Scholar 

  51. Ge X H, Han Q-L, Wang Z D. A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans Cybern, 2019, 49: 171–183

    Article  Google Scholar 

  52. Li H Q, Liao X F, Huang T W, et al. Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Trans Automat Contr, 2015, 60: 1998–2003

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu Z-G, Xu Y, Lu R Q, et al. Event-triggered control for consensus of multiagent systems with fixed/switching topologies. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1736–1746

    Article  Google Scholar 

  54. Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Trans Automat Contr, 2005, 50: 1698–1711

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu Z G, Xu Y, Pan Y J, et al. Event-triggered pinning control for consensus of multiagent systems with quantized information. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1929–1938

    Article  Google Scholar 

  56. Wu Z G, Xu Y, Pan Y J, et al. Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurements and external disturbance. IEEE Trans Circuits Syst I, 2018, 65: 2232–2242

    Article  MathSciNet  Google Scholar 

  57. Wu Y Q, Meng X Y, Xie L H, et al. An input-based triggering approach to leader-following problems. Automatica, 2017, 75: 221–228

    Article  MathSciNet  MATH  Google Scholar 

  58. Garcia E, Cao Y C, Wang X F, et al. Decentralized event-triggered consensus of linear multi-agent systems under directed graphs. In: Proceedings of the 2015 American Control Conference, Chicago, 2015. 5764–5769

    Chapter  Google Scholar 

  59. Xu Y, Fang M, Shi P, et al. Multileader multiagent systems containment control with event-triggering. IEEE Trans Syst Man Cybern Syst, 2019. doi: 10.1109/TSMC.2019.2899967

    Google Scholar 

  60. He W L, Gao X Y, Zhong W M, et al. Secure impulsive synchronization control of multi-agent systems under deception attacks. Inf Sci, 2018, 459: 354–368

    Article  MathSciNet  Google Scholar 

  61. Ding D R, Wang Z D, Ho D W C, et al. Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Trans Cybern, 2017, 47: 1936–1947

    Article  Google Scholar 

  62. Xiao S Y, Han Q-L, Ge X H, et al. Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2900478

    Google Scholar 

  63. de Persis C, Tesi P. Networked control of nonlinear systems under denial-of-service. Syst Control Lett, 2016, 96: 124–131

    Article  MathSciNet  MATH  Google Scholar 

  64. Feng Z, Hu G Q, Wen G H. Distributed consensus tracking for multi-agent systems under two types of attacks. Int J Robust Nonlin Control, 2016, 26: 896–918

    Article  MathSciNet  MATH  Google Scholar 

  65. Hu S L, Yue D, Han Q-L, et al. Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2903817

    Google Scholar 

  66. Xu Y, Fang M, Wu Z-G, et al. Input-based event-triggering consensus of multiagent systems under denial-of-service attacks. IEEE Trans Syst Man Cybern Syst, 2018. doi: 10.1109/TSMC.2018.2875250

    Google Scholar 

  67. de Persis C, Tesi P. Input-to-state stabilizing control under denial-of-service. IEEE Trans Automat Contr, 2015, 60: 2930–2944

    Article  MathSciNet  MATH  Google Scholar 

  68. Liu T F, Jiang Z-P. A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Trans Automat Contr, 2015, 60: 2072–2085

    Article  MathSciNet  MATH  Google Scholar 

  69. Liu T F, Jiang Z-P. Event-based control of nonlinear systems with partial state and output feedback. Automatica, 2015, 53: 10–22

    Article  MathSciNet  MATH  Google Scholar 

  70. Liu W, Huang J. Event-triggered global robust output regulation for a class of nonlinear systems. IEEE Trans Automat Contr, 2017, 62: 5923–5930

    Article  MathSciNet  MATH  Google Scholar 

  71. Liu W, Huang J. Cooperative global robust output regulation for a class of nonlinear multi-agent systems by distributed event-triggered control. Automatica, 2018, 93: 138–148

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang J Q, Sheng A D, Xu D B, et al. Event-based practical output regulation for a class of multiagent nonlinear systems. IEEE Trans Cybern, 2019, 49: 3689–3698

    Article  Google Scholar 

  73. Khan G D, Chen Z Y, Zhu L J. A new approach for event-triggered stabilization and output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 2019. doi: 10.1109/TAC.2019.2949894

    Google Scholar 

  74. Chen Z Y, Fujioka H. Performance analysis of nonlinear sampled-data emulated controllers. IEEE Trans Automat Contr, 2014, 59: 2778–2783

    Article  MathSciNet  MATH  Google Scholar 

  75. Ding L, Han Q-L, Wang L Y, et al. Distributed cooperative optimal control of dc microgrids with communication delays. IEEE Trans Ind Inf, 2018, 14: 3924–3935

    Article  Google Scholar 

  76. Ding L, Han Q-L, Zhang X M. Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans Ind Inf, 2019, 15: 3910–3922

    Article  Google Scholar 

  77. Zuo Z Y, Han Q-L, Ning B D, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans Ind Inf, 2018, 14: 2322–2334

    Article  Google Scholar 

  78. Ning B D, Han Q-L. Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics. IEEE Trans Automat Contr, 2019, 64: 1686–1693

    Article  MathSciNet  MATH  Google Scholar 

  79. Ning B D, Han Q-L, Zuo Z Y. Distributed optimization for multiagent systems: an edge-based fixed-time consensus approach. IEEE Trans Cybern, 2019, 49: 122–132

    Article  Google Scholar 

  80. Parsegov S E, Polyakov A E, Shcherbakov P S. Fixed-time consensus algorithm for multi-agent systems with integrator dynamics. In: Proceedings of the 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems, Rhine-Moselle-Hall, Koblenz, 2013, 110–115

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61803167, 51729501) and State Key Laboratory of Industrial Control Technology (Grant No. ICT1900344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Long Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Han, QL., Yan, Y. et al. How often should one update control and estimation: review of networked triggering techniques. Sci. China Inf. Sci. 63, 150201 (2020). https://doi.org/10.1007/s11432-019-2637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2637-9

Keywords

Navigation