Improving dynamics of integer-order small-world network models under fractional-order PD control

Abstract

The optimal control of dynamics is a popular topic for small-world networks. In this paper, we address the problem of improving the behavior of Hopf bifurcations in an integer-order model of small-world networks. In this study, the time delay is used as the bifurcation parameter. We add a fractional-order proportional-derivative (PD) scheme to an integer-order Newman-Watts (N-W) small-world model to better control the Hopf bifurcation of the model. The most important contribution of this paper involves obtaining the stability of the system and the variation of the conditions of the Hopf bifurcation after a fractional PD controller is added to the integer-order small-world model. The results demonstrate that the designed PD controller can be used to restrain or promote the occurrence of Hopf bifurcations by setting appropriate parameters. We also describe several simulations to verify our research results.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393: 440–442

    Article  Google Scholar 

  2. 2

    Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Phys Lett A, 1999, 263: 341–346

    MathSciNet  Article  Google Scholar 

  3. 3

    Yang X S. Chaos in small-world networks. Phys Rev E, 2001, 63: 046206

    Article  Google Scholar 

  4. 4

    Xiao M, Ho D W C, Cao J D. Time-delayed feedback control of dynamical small-world networks at Hopf bifurcation. Nonlinear Dyn, 2009, 58: 319–344

    MathSciNet  Article  Google Scholar 

  5. 5

    Xu X, Luo J W. Dynamical model and control of a small-world network with memory. Nonlinear Dyn, 2013, 73: 1659–1669

    MathSciNet  Article  Google Scholar 

  6. 6

    Li C G, Chen G R. Local stability and Hopf bifurcation in small-world delayed networks. Chaos Solitons Fract, 2004, 20: 353–361

    MathSciNet  Article  Google Scholar 

  7. 7

    Li N, Sun H Y, Zhang Q L. Bifurcations and chaos control in discrete small-world networks. Chin Phys B, 2012, 21: 010503

    Article  Google Scholar 

  8. 8

    Liu F, Guan Z H, Wang H. Controlling bifurcations and chaos in discrete small-world networks. Chin Phys B, 2008, 17: 2405–2411

    Article  Google Scholar 

  9. 9

    Mahajan A V, Gade P M. Transition from clustered state to spatiotemporal chaos in a small-world networks. Phys Rev E, 2010, 81: 056211

    Article  Google Scholar 

  10. 10

    Wu X Q, Zhao X Y, Lu J H, et al. Identifying topologies of complex dynamical networks with stochastic perturbations. IEEE Trans Control Netw Syst, 2016, 3: 379–389

    MathSciNet  Article  Google Scholar 

  11. 11

    Maslennikov O V, Nekorkin V I, Kurths J. Basin stability for burst synchronization in small-world networks of chaotic slow-fast oscillators. Phys Rev E, 2015, 92: 042803

    Article  Google Scholar 

  12. 12

    Mei G F, Wu X Q, Ning D, et al. Finite-time stabilization of complex dynamical networks via optimal control. Complexity, 2016, 21: 417–425

    MathSciNet  Article  Google Scholar 

  13. 13

    Xiao M, Zheng W X, Lin J X, et al. Fractional-order PD control at Hopf bifurcations in delayed fractional-order small-world networks. J Franklin Inst, 2017, 354: 7643–7667

    MathSciNet  Article  Google Scholar 

  14. 14

    Zhou J, Xu X, Yu D Y, et al. Stability, instability and bifurcation modes of a delayed small world network with excitatory or inhibitory short-cuts. Int J Bifurcat Chaos, 2016, 26: 1650070

    MathSciNet  Article  Google Scholar 

  15. 15

    Cao J D, Guerrini L, Cheng Z S. Stability and Hopf bifurcation of controlled complex networks model with two delays. Appl Math Comput, 2019, 343: 21–29

    MathSciNet  MATH  Google Scholar 

  16. 16

    Cao Y. Bifurcations in an Internet congestion control system with distributed delay. Appl Math Comput, 2019, 347: 54–63

    MathSciNet  MATH  Google Scholar 

  17. 17

    Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf bifurcation. Cambridge: Cambridge University Press, 1981

    Google Scholar 

  18. 18

    Han M A, Sheng L J, Zhang X. Bifurcation theory for finitely smooth planar autonomous differential systems. J Differ Equ, 2018, 264: 3596–3618

    MathSciNet  Article  Google Scholar 

  19. 19

    Tian H H, Han M A. Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems. J Differ Equ, 2017, 263: 7448–7474

    MathSciNet  Article  Google Scholar 

  20. 20

    Liu L S, Sun F L, Zhang X G. Bifurcation analysis for a singular differential system with two parameters via to topological degree theory. Nonlinear Anal Model Control, 2017, 22: 31–50

    MathSciNet  MATH  Google Scholar 

  21. 21

    Li S Q, Peng X Y, Tang Y, et al. Finite-time synchronization of time-delayed neural networks with unknown parameters via adaptive control. Neurocomputing, 2018, 308: 65–74

    Article  Google Scholar 

  22. 22

    Guo W C, Yang J D. Hopf bifurcation control of hydro-turbine governing system with sloping ceiling tailrace tunnel using nonlinear state feedback. Chaos Soliton Fract, 2017, 104: 426–434

    MathSciNet  Article  Google Scholar 

  23. 23

    Ali M S, Yogambigai J. Passivity-based synchronization of stochastic switched complex dynamical networks with additive time-varying delays via impulsive control. Neurocomputing, 2018, 273: 209–221

    Article  Google Scholar 

  24. 24

    Liu R J, She J H, Wu M, et al. Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach. Sci China Inf Sci, 2018, 61: 070222

    MathSciNet  Article  Google Scholar 

  25. 25

    Al Hosani K, Nguyen T H, Al Sayari N. Fault-tolerant control of MMCs based on SCDSMs in HVDC systems during DC-cable short circuits. Int J Electr Power Energ Syst, 2018, 100: 379–390

    Article  Google Scholar 

  26. 26

    Ding D W, Zhang X Y, Cao J D, et al. Bifurcation control of complex networks model via PD controller. Neurocomputing, 2016, 175: 1–9

    Article  Google Scholar 

  27. 27

    Tang Y H, Xiao M, Jiang G P, et al. Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system. Nonlinear Dyn, 2017, 90: 2185–2198

    MathSciNet  Article  Google Scholar 

  28. 28

    Zhang W Z, Dong X K, Liu X Y. Switched fuzzy-PD control of contact forces in robotic microbiomanipulation. IEEE Trans Biomed Eng, 2017, 64: 1169–1177

    Article  Google Scholar 

  29. 29

    Ouyang P R, Pano V, Tang J, et al. Position domain nonlinear PD control for contour tracking of robotic manipulator. Robot Comput-Integr Manuf, 2018, 51: 14–24

    Article  Google Scholar 

  30. 30

    Özbay H, Bonnet C, Fioravanti A R. PID controller design for fractional-order systems with time delays. Syst Control Lett, 2012, 61: 18–23

    MathSciNet  Article  Google Scholar 

  31. 31

    Wu J, Zhang X G, Liu L S, et al. Iterative algorithm and estimation of solution for a fractional order differential equation. Bound Value Probl, 2016, 2016: 116

    MathSciNet  Article  Google Scholar 

  32. 32

    Li M M, Wang J R. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl Math Comput, 2018, 324: 254–265

    MathSciNet  MATH  Google Scholar 

  33. 33

    Zhang X G, Liu L S, Wu Y H. The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl Math Lett, 2014, 37: 26–33

    MathSciNet  Article  Google Scholar 

  34. 34

    Bao F X, Yao X X, Sun Q H, et al. Smooth fractal surfaces derived from bicubic rational fractal interpolation functions. Sci China Inf Sci, 2018, 61: 099104

    MathSciNet  Article  Google Scholar 

  35. 35

    Guan Y L, Zhao Z Q, Lin X L. On the existence of positive solutions and negative solutions of singular fractional differential equations via global bifurcation techniques. Bound Value Probl, 2016, 2016: 141

    MathSciNet  Article  Google Scholar 

  36. 36

    Shao J, Zheng Z W, Meng F W. Oscillation criteria for fractional differential equations with mixed nonlinearities. Adv Differ Equ, 2013, 2013: 323

    MathSciNet  Article  Google Scholar 

  37. 37

    Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999

    Google Scholar 

  38. 38

    Li C P, Deng W H. Remarks on fractional derivatives. Appl Math Comput, 2007, 187: 777–784

    MathSciNet  MATH  Google Scholar 

  39. 39

    Bhalekar S, Varsha D. A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J Fractional Calc Appl, 2011, 1: 1–9

    Google Scholar 

  40. 40

    Zhang C, Zhao D H, Ruan J. Delay induced Hopf bifurcation of small-world networks. Chin Ann Math Ser B, 2007, 28: 453–462

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61573194, 51775284, 61877033), Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20181389, BK20181387), Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province (Grant No. 2018SJZDI142), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_0924).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Min Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xiao, M., Tao, B. et al. Improving dynamics of integer-order small-world network models under fractional-order PD control. Sci. China Inf. Sci. 63, 112206 (2020). https://doi.org/10.1007/s11432-018-9933-6

Download citation

Keywords

  • small-world networks
  • stability
  • Hopf bifurcation
  • bifurcation control
  • fractional-order PD control