Stability analysis of switched positive nonlinear systems: an invariant ray approach


This paper addresses the stability problem associated with a class of switched positive nonlinear systems in which each vector field is homogeneous, cooperative, and irreducible. Instead of using the Lyapunov function approach, we fully establish the invariant ray analysis method to establish several stability conditions that depend on the states, rays, and/or times. We illustrate the efficiency of our proposed approach using the example of a chemical reaction.

This is a preview of subscription content, access via your institution.


  1. 1

    Farina L, Rinaldi S. Positive Linear Systems. New York: Wiley, 2000

    Google Scholar 

  2. 2

    Silva-Navarro G, Alvarez-Gallegos J. Sign and stability of equilibria in quasi-monotone positive nonlinear systems. IEEE Trans Automat Contr, 1997, 42: 403–407

    MathSciNet  Article  Google Scholar 

  3. 3

    Shim H, Jo N H. Determination of stability with respect to positive orthant for a class of positive nonlinear systems. IEEE Trans Automat Contr, 2008, 53: 1329–1334

    MathSciNet  Article  Google Scholar 

  4. 4

    Haddad W M, Chellaboina V S. Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlin Anal-Real World Appl, 2005, 6: 35–65

    MathSciNet  Article  Google Scholar 

  5. 5

    Feyzmahdavian H R, Besselink B, Johansson M. Stability analysis of monotone systems via max-separable Lyapunov functions. IEEE Trans Automat Contr, 2018, 63: 643–656

    MathSciNet  Article  Google Scholar 

  6. 6

    Ngoc P H A. A Perron-Frobenius theorem for a class of positive quasi-polynomial matrices. Appl Math Lett, 2006, 19: 747–751

    MathSciNet  Article  Google Scholar 

  7. 7

    Lemmens B, Nussbaum R. Nonlinear Perron-Frobenius Theory. Cambridge: Cambridge University Press, 2012

    Google Scholar 

  8. 8

    de Leenheer P, Aeyels D. Stability properties of equilibria of classes of cooperative systems. IEEE Trans Automat Contr, 2001, 46: 1996–2001

    MathSciNet  Article  Google Scholar 

  9. 9

    Aeyels D, de Leenheer P. Extension of the Perron-Frobenius theorem to homogeneous systems. SIAM J Control Opt, 2002, 41: 563–582

    MathSciNet  Article  Google Scholar 

  10. 10

    Mason O, Verwoerd M. Observations on the stability properties of cooperative systems. Syst Control Lett, 2009, 58: 461–467

    MathSciNet  Article  Google Scholar 

  11. 11

    Liberzon D. Switching in Systems and Control. Boston: Birkhauser, 2003

    Google Scholar 

  12. 12

    Sun Z, Ge S S. Stability Theory of Switched Dynamical Systems. Berlin: Springer, 2011

    Google Scholar 

  13. 13

    Hespanha J P. Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle. IEEE Trans Automat Contr, 2004, 49: 470–482

    MathSciNet  Article  Google Scholar 

  14. 14

    Zhao J, Hill D J. On stability, L 2 gain and H control for switched systems. Automatica, 2008, 44: 1220–1232

    Article  Google Scholar 

  15. 15

    Zhao X, Zhang L, Shi P, et al. Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans Automat Contr, 2012, 57: 1809–1815

    MathSciNet  Article  Google Scholar 

  16. 16

    Yang H, Jiang B, Cocquempot V. Stabilization of Switched Nonlinear Systems With Unstable Modes. Berlin: Springer, 2014

    Google Scholar 

  17. 17

    Yang H, Jiang B, Tao G, et al. Robust stability of switched nonlinear systems with switching uncertainties. IEEE Trans Automat Contr, 2016, 61: 2531–2537

    MathSciNet  Article  Google Scholar 

  18. 18

    Liu X, Zhao Q, Zhong S. Stability analysis of a class of switched nonlinear systems with delays: a trajectory-based comparison method. Automatica, 2018, 91: 36–42

    MathSciNet  Article  Google Scholar 

  19. 19

    Ma R C, An S, Fu J. Dwell-time-based stabilization of switched positive systems with only unstable subsystems. Sci China Inf Sci, 2019. doi:

  20. 20

    Zeng X, Lin W, Yang Z, et al. Linear invariant generation for verification of nonlinear hybrid systems via conservative approximation. Sci China Inf Sci, 2017, 60: 039102

    Article  Google Scholar 

  21. 21

    Ogura M, Preciado V M. Stability of spreading processes over time-varying large-scale networks. IEEE Trans Netw Sci Eng, 2016, 3: 44–57

    MathSciNet  Article  Google Scholar 

  22. 22

    Colaneri P, Middleton R H, Chen Z, et al. Convexity of the cost functional in an optimal control problem for a class of positive switched systems. Automatica, 2014, 50: 1227–1234

    MathSciNet  Article  Google Scholar 

  23. 23

    Hernandez-Vargas E A, Colaneri P, Middleton R H. Switching strategies to mitigate HIV mutation. IEEE Trans Contr Syst Technol, 2014, 22: 1623–1628

    Article  Google Scholar 

  24. 24

    Mason O, Shorten R. On linear copositive lyapunov functions and the stability of switched positive linear systems. IEEE Trans Automat Contr, 2007, 52: 1346–1349

    MathSciNet  Article  Google Scholar 

  25. 25

    Liu X, Dang C. Stability analysis of positive switched linear systems with delays. IEEE Trans Automat Contr, 2011, 56: 1684–1690

    MathSciNet  Article  Google Scholar 

  26. 26

    Blanchini F, Colaneri P, Valcher M E. Co-positive Lyapunov functions for the stabilization of positive switched systems. IEEE Trans Automat Contr, 2012, 57: 3038–3050

    MathSciNet  Article  Google Scholar 

  27. 27

    Wu Z R, Sun Y G. On easily verifiable conditions for the existence of common linear copositive Lyapunov functions. IEEE Trans Automat Contr, 2013, 58: 1862–1865

    MathSciNet  Article  Google Scholar 

  28. 28

    Zhao X, Zhang L, Shi P, et al. Stability of switched positive linear systems with average dwell time switching. Automatica, 2012, 48: 1132–1137

    MathSciNet  Article  Google Scholar 

  29. 29

    Zhao X, Liu X, Yin S, et al. Improved results on stability of continuous-time switched positive linear systems. Automatica, 2014, 50: 614–621

    MathSciNet  Article  Google Scholar 

  30. 30

    Pastravanu O C, Matcovschi M H. Max-type copositive Lyapunov functions for switching positive linear systems. Automatica, 2014, 50: 3323–3327

    MathSciNet  Article  Google Scholar 

  31. 31

    Lian J, Liu J. New results on stability of switched positive systems: an average dwell-time approach. IET Contr Theor Appl, 2013, 7: 1651–1658

    MathSciNet  Article  Google Scholar 

  32. 32

    Zhang J S, Wang Y W, Xiao J W, et al. Stability analysis of switched positive linear systems with stable and unstable subsystems. Int J Syst Sci, 2014, 45: 2458–2465

    MathSciNet  Article  Google Scholar 

  33. 33

    Haddad W M, Chellaboina V, Nersesov S G. Hybrid nonnegative and computational dynamical systems. Math Problems Eng, 2002, 8: 493–515

    MathSciNet  Article  Google Scholar 

  34. 34

    Dong J G. Stability of switched positive nonlinear systems. Int J Robust Nonlin Control, 2016, 26: 3118–3129

    MathSciNet  Article  Google Scholar 

  35. 35

    Bacciotti A, Rosier L. Liapunov Functions and Stability in Control Theory. Berlin: Springer-Verlag, 2005

    Google Scholar 

  36. 36

    Smith H L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Providence: American Mathematical Society, 1995

    Google Scholar 

  37. 37

    Sauer T. Numerical Analysis. 2nd ed. New York: Pearson Education, Inc., 2012

    Google Scholar 

  38. 38

    Lakshmikantham V, Leela S. Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations. New York: Academic Press, 1969

    Google Scholar 

  39. 39

    Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Syst Control Lett, 1992, 19: 467–473

    MathSciNet  Article  Google Scholar 

  40. 40

    Hill C G. An Introduction to Chemical Engineering Kinetics and Reactor Design. Hoboken: John Wiley and Sons, 1977

    Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61622304, 61773201), Natural Science Foundation of Jiangsu Province (Grant No. BK20160035), and Fundamental Research Funds for the Central Universities (Grant Nos. NE2014202, NE2015002).

Author information



Corresponding author

Correspondence to Hao Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhao, X. & Jiang, B. Stability analysis of switched positive nonlinear systems: an invariant ray approach. Sci. China Inf. Sci. 62, 212206 (2019).

Download citation


  • positive systems
  • switched nonlinear systems
  • stability