Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Analysis of irregular repetition spatially-coupled slotted ALOHA

Abstract

Contention-based access is a promising technology for massive and sporadic transmissions. In this paper, we propose a novel contention-based multiple access scheme, named irregular repetition spatially-coupled slotted ALOHA (IRSC-SA), motivated by the spatial coupling and irregular repetition techniques. There are different classes of users and slots in IRSC-SA, which result in unequal protection for different users. Considering that, we derive a novel density evolution (DE) method, which deals with unequal packet protection and introduces Bayesian reasoning to analyze the throughput threshold of the proposed IRSC-SA. Theoretical analysis and simulation results show that the proposed scheme achieves better asymptotic threshold and system packet throughput performance than the conventional spatially-coupled slotted ALOHA.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Bockelmann C, Pratas N, Nikopour H, et al. Massive machine-type communications in 5G: physical and MAC-layer solutions. IEEE Commun Mag, 2016, 54: 59–65

  2. 2

    3GPP. Study on Scenarios and Requirements for Next Generation Access Technologies. TR 38.913. 2018. https://www.3gpp.org/ftp/specs/archive/38_series/38.913/

  3. 3

    Saad W, Bennis M, Chen M Z. A vision of 6G wireless systems: applications trends technologies and open research problems. 2019. arXiv: 1902.10265

  4. 4

    Tariq F, Khandaker M, Wong K, et al. A speculative study on 6G. 2019. arXiv: 1902.06700

  5. 5

    Wu J, Fan P. A survey on high mobility wireless communications: challenges, opportunities and solutions. IEEE Access, 2016, 4: 450–476

  6. 6

    Saito Y, Kishiyama Y, Benjebbour A, et al. Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proceedings of IEEE 77th Vehicular Technology Conference, Dresden, 2013. 1–5

  7. 7

    Yuan Y, Yuan Z, Yu G, et al. Non-orthogonal transmission technology in LTE evolution. IEEE Commun Mag, 2016, 54: 68–74

  8. 8

    Taherzadeh M, Nikopour H, Bayesteh A, et al. SCMA codebook design. In: Proceedings of IEEE Vehicular Technology Conference, 2014. 1–5

  9. 9

    Au K, Zhang L, Nikopour H, et al. Uplink contention based SCMA for 5G radio access. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), 2014. 900–905

  10. 10

    3GPP. Study on Non-Orthogonal Multiple Access (NOMA) for NR. TR 38.913. 2018. https://www.3gpp.org/ftp/specs/archive/38_series/38.812/

  11. 11

    Zhang Z, Wang X, Zhang Y, et al. Grant-free rateless multiple access: a novel massive access scheme for internet of things. IEEE Commun Lett, 2016, 20: 2019–2022

  12. 12

    Shirvanimoghaddam M, Li Y H, Vucetic B. Multiple access analog fountain codes. In: Proceedings of IEEE International Symposium on Information Theory, Honolulu, 2014. 2167–2171

  13. 13

    Choudhury G, Rappaport S. Diversity ALOHA-a random access scheme for satellite communications. IEEE Trans Commun, 1983, 31: 450–457

  14. 14

    Casini E, de Gaudenzi R, Herrero O R. Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access schemefor satellite access packet networks. IEEE Trans Wirel Commun, 2007, 6: 1408–1419

  15. 15

    Liva G. Graph-based analysis and optimization of contention resolution diversity slotted ALOHA. IEEE Trans Commun, 2011, 59: 477–487

  16. 16

    Sun Z, Xie Y, Yuan J, et al. Coded slotted ALOHA schemes for erasure channels. In: Proceedings of IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016. 1–6

  17. 17

    Paolini E, Stefanovic C, Liva G, et al. Coded random access: applying codes on graphs to design random access protocols. IEEE Commun Mag, 2015, 53: 144–150

  18. 18

    Jia D, Fei Z S, Xiao M, et al. Enhanced frameless slotted ALOHA protocol with Markov chains analysis. Sci China Inf Sci, 2018, 61: 102304

  19. 19

    Cao C Z, Fei Z S, Xiao M, et al. An extended packetization-aware mapping algorithm for scalable video coding in finite-length fountain codes. Sci China Inf Sci, 2013, 56: 042311

  20. 20

    Huang J X, Fei Z S, Cao C Z, et al. On-line fountain codes with unequal error protection. IEEE Commun Lett, 2017, 21: 1225–1228

  21. 21

    Huang J X, Fei Z S, Cao C Z, et al. Performance analysis and improvement of online fountain codes. IEEE Trans Commun, 2018, 66: 5916–5926

  22. 22

    Toni L, Frossard P. Prioritized random MAC optimization via graph-based analysis. IEEE Trans Commun, 2015, 63: 5002–5013

  23. 23

    Stefanovic V, Popovski P. Coded slotted ALOHA with varying packet loss rate across users. In: Proceedings of IEEE Global Conference on Signal and Information Processing, Austin, 2013. 787–790

  24. 24

    Ivanov M, Brannstrom F, Graell i Amat A, et al. Unequal error protection in coded slotted ALOHA. IEEE Wirel Commun Lett, 2016, 5: 536–539

  25. 25

    Sandgren E, Graell i Amat A, Brannstrom F. On frame asynchronous coded slotted ALOHA: asymptotic, finite length, and delay analysis. IEEE Trans Commun, 2017, 65: 691–704

  26. 26

    Cao C Z, Koike-Akino T, Wang Y, et al. Irregular polar coding for massive MIMO. In: Proceedings of IEEE Global Communications Conference, Singapore, 2017

  27. 27

    Koike-Akino T, Cao C Z, Wang Y, et al. Irregular polar coding for complexity-constrained lightwave systems. J Lightw Technol, 2018, 36: 2248–2258

  28. 28

    Koike-Akino T, Cao C Z, Wang Y. Turbo product codes with irregular polar coding for high-throughput parallel decoding in wireless OFDM transmission. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1–7

  29. 29

    Kudekar S, Richardson T J, Urbanke R L. Threshold saturation via spatial coupling: why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans Inform Theor, 2011, 57: 803–834

  30. 30

    Engdahl K, Lentmaier M, Zigangirov K S. On the theory of low-density convolutional codes. In: Proceedings of International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, 1999. 77–86

  31. 31

    Liva G, Paolini E, Lentmaier M, et al. Spatially-coupled random access on graphs. In: Proceedings of IEEE International Symposium on Information Theory Proceedings (ISIT), Cambridge, 2012. 478–482

  32. 32

    Richardson T J, Shokrollahi M A, Urbanke R L. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inform Theor, 2001, 47: 619–637

  33. 33

    Narayanan K R, Pfister H D. Iterative collision resolution for slotted ALOHA: An optimal uncoordinated transmission policy. In: Proceedings of International Symposium on Turbo Codes and Iterative Information Processing (ISTC). Gothenburg, 2012. 136–139

Download references

Acknowledgements

This work was partially supported by Beijing Natural Science Foundation (Grant No. L182038), Chinese Ministry of Education-China Mobile Communication Corporation Research Fund (Grant No. MCM20170101), China National S&T Major Project (Grant No. 2017ZX03001017), National Natural Science Foundation of China (Grant No. 61871032), Beijing Major Science and Technology Projects (Grant No. D171100006317001), Ericsson company, and 111 Project of China (Grant No. B14010).

Author information

Correspondence to Zesong Fei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Fei, Z., Cao, C. et al. Analysis of irregular repetition spatially-coupled slotted ALOHA. Sci. China Inf. Sci. 62, 80302 (2019). https://doi.org/10.1007/s11432-018-9837-9

Download citation

Keywords

  • spatial coupling
  • coded slotted ALOHA
  • contention-based access
  • density evolution
  • irregular repetition