Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition

  • Teng Long
  • Zhennan Liang
  • Quanhua LiuEmail author


In recent years, the performances of radar resolution, coverage, and detection accuracy have been significantly improved through the use of ultra-wideband, synthetic aperture and digital signal processing technologies. High-resolution radars (HRRs) utilize wideband signals and synthetic apertures to enhance the range and angular resolutions of tracking, respectively. They also generate one-, two-, and even threedimensional high-resolution images containing the feature information of targets, from which the targets can be precisely classified and identified. Advanced signal processing algorithms in HRRs obtain important information such as range-Doppler imaging, phase-derived ranging, and micro-motion features. However, the advantages and applications of HRRs are restricted by factors such as the reduced signal-to-noise ratio (SNR) of multi-scatter point targets, decreased tracking accuracy of multi-scatter point targets, high demands of motion compensation, and low sensitivity of the target attitude. Focusing on these problems, this paper systematically introduces the novel technologies of HRRs and discusses the issues and solutions relevant to detection, tracking, imaging, and recognition. Finally, it reviews the latest progress and representative results of HRR-based research, and suggests the future development of HRRs.


high-resolution radar integrated detection and tracking multiple target tracking phase-derived velocity inverse synthetic aperture radar(ISAR) hierarchical classification convolution neural network 



This work was supported by National Natural Science Foundation of China (Grant No. 61771050) and 111 Project of the China Ministry of Education (MOE) (Grant No. B14010).


  1. 1.
    Fabrizio G A. High Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing, and Practical Applications. New York: McGraw-Hill, 2013Google Scholar
  2. 2.
    van Trees H L. Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processing. Hoboken: Wiley & Sons, 2002Google Scholar
  3. 3.
    Farina A. Antenna-Based Signal Processing Techniques for Radar Systems. Norwood: Artech House, 1992Google Scholar
  4. 4.
    Fenn A J, Temme D H, Delaney W P, et al. The development of phased-array radar technology. Lincoln Lab J, 2000, 12: 321–340Google Scholar
  5. 5.
    Brookner E. Phased arrays around the world-progress and future trends. In: Proceedings of IEEE International Symposium on Phased Array Systems and Technology, 2003Google Scholar
  6. 6.
    Wang D C. Discussion on the theoretical foundation of development and innovation for radar technical system. Modern Radar, 2014, 26: 142–148Google Scholar
  7. 7.
    North D O. An analysis of the factors which determine signal/noise discrimination in pulsed-carrier systems. Proc IEEE, 1963, 51: 1016–1027CrossRefGoogle Scholar
  8. 8.
    Woodward P M. Probability and Information Theory with Application to Radar. London: Pergamon Press, 1953zbMATHGoogle Scholar
  9. 9.
    Dicke R H. Object detection system. US Patent, 2624876, 1953Google Scholar
  10. 10.
    Shirman Y D, Leshchenko S P, Orlenko V M. Advantages and problems of wideband radar. In: Proceedings of IEEE International Radar Conference, Portland, 2003. 15–21Google Scholar
  11. 11.
    Wehner D R. High Resolution Radar. Norwood: Artech House, 1995Google Scholar
  12. 12.
    Eaves J L, Reedy E K. Principles of Modern Radar. New York: Van Nostrand Reinhold, 2010Google Scholar
  13. 13.
    Le Chevalier F. Principles of Radar and Sonar Signal Processing. Norwood: Artech House, 2002Google Scholar
  14. 14.
    Long T, Liu Q H, Chen X L. Wideband Radar. Beijing: National Defense Industry Press, 2017Google Scholar
  15. 15.
    Lindsay J E. Angular glint and the moving, rotating, complex radar target. IEEE Trans Aerosp Electron Syst, 1968, 4: 164–173CrossRefGoogle Scholar
  16. 16.
    Barton D K. Radar system analysis and modeling. IEEE Aerosp Electron Syst Mag, 2005, 20: 23–25CrossRefGoogle Scholar
  17. 17.
    Skolnik M I. Radar Handbook. 3rd ed. New York: McGraw-Hill, 2008Google Scholar
  18. 18.
    Brookner E. Aspects of Modern Radar. Norwood: Artech House, 1988Google Scholar
  19. 19.
    Li N J, Zhang Y T. A survey of radar ECM and ECCM. IEEE Trans Aerosp Electron Syst, 1995, 31: 1110–1120CrossRefGoogle Scholar
  20. 20.
    Greco M, Gini F, Farina A. Radar detection and classification of jamming signals belonging to a cone class. IEEE Trans Signal Process, 2008, 56: 1984–1993MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Howard D. High range-resolution monopulse tracking radar. IEEE Trans Aerosp Electron Syst, 1975, 11: 749–755CrossRefGoogle Scholar
  22. 22.
    Rycroft M J. Book review: understanding synthetic aperture radar images. J Atmos Sol-Terr Phys, 1999, 61: 424CrossRefGoogle Scholar
  23. 23.
    Zeng T, Liu T D, Ding Z G, et al. A novel DEM reconstruction strategy based on multi-frequency InSAR in highly sloped terrain. Sci China Inf Sci, 2017, 60: 088301CrossRefGoogle Scholar
  24. 24.
    Li Y C, Jin Y Q. Target decomposition and recognition from wide-angle SAR imaging based on a Gaussian amplitudephase model. Sci China Inf Sci, 2017, 60: 062305CrossRefGoogle Scholar
  25. 25.
    Hu C, Li Y H, Dong X C, et al. Optimal 3D deformation measuring in inclined geosynchronous orbit SAR differential interferometry. Sci China Inf Sci, 2017, 60: 060303CrossRefGoogle Scholar
  26. 26.
    Fuster R M, Usón M F, Ibars A B. Interferometric orbit determination for geostationary satellites. Sci China Inf Sci, 2017, 60: 060302CrossRefGoogle Scholar
  27. 27.
    Zheng W J, Hu J, Zhang W, et al. Potential of geosynchronous SAR interferometric measurements in estimating three-dimensional surface displacements. Sci China Inf Sci, 2017, 60: 060304CrossRefGoogle Scholar
  28. 28.
    Yin W, Ding Z G, Lu X J, et al. Beam scan mode analysis and design for geosynchronous SAR. Sci China Inf Sci, 2017, 60: 060306CrossRefGoogle Scholar
  29. 29.
    Ding Z G, Xiao F, Xie Y Z, et al. A modified fixed-point chirp scaling algorithm based on updating phase factors regionally for spaceborne SAR real-time imaging. IEEE Trans Geosci Remote Sens, 2018, 56: 7436–7451CrossRefGoogle Scholar
  30. 30.
    Steudel F. An improved process for phase-derived-range measurements. World Intellectual Property Organization, WO 2005/017553 A1, 2005Google Scholar
  31. 31.
    Steudel F. Process for phase-derived range measurements. US Patent, WO 2005/030222 A1, 2005Google Scholar
  32. 32.
    Song C, Wu Y R, Zhou L J, et al. A multicomponent micro-Doppler signal decomposition and parameter estimation method for target recognition. Sci China Inf Sci, 2019, 62: 029304MathSciNetCrossRefGoogle Scholar
  33. 33.
    Li K, Liang X J, Zhang Q, et al. Micro-Doppler signature extraction and ISAR imaging for target with micromotion dynamics. IEEE Geosci Remote Sens Lett, 2011, 8: 411–415CrossRefGoogle Scholar
  34. 34.
    Liu Y X, Zhu D K, Li X, et al. Micromotion characteristic acquisition based on wideband radar phase. IEEE Trans Geosci Remote Sens, 2014, 52: 3650–3657CrossRefGoogle Scholar
  35. 35.
    Guo L Y, Fan H Y, Liu Q H, et al. Analysis of micro-motion feature in ISAR imaging via phase-derived velocity measurement technique. In: Proceedings of IEEE Radar Conference, Seattle, 2017. 0783–0787Google Scholar
  36. 36.
    Roth K R, Austin M E, Frediani D J, et al. The Kiernan reentry measurements system on Kwajalein Atoll. Lincoln Lab J, 1989, 2: 247–276Google Scholar
  37. 37.
    Xia X W, Jing W X, Li C Y. Assessment on GMD’s deployment status and operational capability. Mod Defence Technol, 2008, 36: 11–18Google Scholar
  38. 38.
    Zhou W X. Development and prospect of ISAR imaging system and imaging technique. Mod Radar, 2012, 34: 1–7Google Scholar
  39. 39.
    Gerlach K. Spatially distributed target detection in non-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 1999, 35: 926–934CrossRefGoogle Scholar
  40. 40.
    He Y, Gu X F, Jian T, et al. A M out of N detector based on scattering density. In: Proceedings of IET International Radar Conference, Guilin, 2009Google Scholar
  41. 41.
    Chen X L, Wang L, Liu S L. Research on extended target detection for high resolution radar (in Chinese). Sci Sin Inform, 2012, 42: 1007–1018Google Scholar
  42. 42.
    Conte E, de Maio A, Ricci G. GLRT-based adaptive detection algorithms for range-spread targets. IEEE Trans Signal Process, 2001, 49: 1336–1348CrossRefGoogle Scholar
  43. 43.
    Conte E, de Maio A. Distributed target detection in compound-Gaussian noise with Rao and Wald tests. IEEE Trans Aerosp Electron Syst, 2003, 39: 568–582CrossRefGoogle Scholar
  44. 44.
    Bandiera F, de Maio A, Greco A S, et al. Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference. IEEE Trans Signal Process, 2007, 55: 1223–1237MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    He Y, Jian T, Su F G, et al. Novel range-spread target detectors in non-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 2010, 46: 1312–1328CrossRefGoogle Scholar
  46. 46.
    Dai F Z, Liu H W, Shui P L, et al. Adaptive detection of wideband radar range spread targets with range walking in clutter. IEEE Trans Aerosp Electron Syst, 2012, 48: 2052–2064CrossRefGoogle Scholar
  47. 47.
    Jian T, He Y, Su F, et al. Cascaded detector for range-spread target in non-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 2012, 48: 1713–1725CrossRefGoogle Scholar
  48. 48.
    Aubry A, de Maio A, Pallotta L, et al. Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions. IEEE Trans Signal Process, 2013, 61: 4949–4961MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Ciuonzo D, de Maio A, Orlando D. A unifying framework for adaptive radar detection in homogeneous plus structured interference–part II: detectors design. IEEE Trans Signal Process, 2016, 64: 2907–2919MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Shui P L, Liu H W, Bao Z. Range-spread target detection based on cross time-frequency distribution features of two adjacent received signals. IEEE Trans Signal Process, 2009, 57: 3733–3745MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Xu S W, Shui P L, Yan X Y. CFAR detection of range-spread target in white Gaussian noise using waveform entropy. Electron Lett, 2010, 46: 647–649CrossRefGoogle Scholar
  52. 52.
    Xu S W, Shui P L. Range-spread target detection in white Gaussian noise via two-dimensional non-linear shrinkage map and geometric average integration. IET Radar Sonar Navig, 2012, 6: 90–98CrossRefGoogle Scholar
  53. 53.
    Shui P L, Xu S W, Liu H W. Range-spread target detection using consecutive HRRPs. IEEE Trans Aerosp Electron Syst, 2011, 47: 647–665CrossRefGoogle Scholar
  54. 54.
    Zuo L, Li M, Zhang X W, et al. CFAR detection of range-spread targets based on the time-frequency decomposition feature of two adjacent returned signals. IEEE Trans Signal Process, 2013, 61: 6307–6319MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Long T, Zheng L, Li Y, et al. Improved double threshold detector for spatially distributed target. IEICE Trans Commun, 2012, 95: 1475–1478CrossRefGoogle Scholar
  56. 56.
    Luo Y, Zhang Q, Qiu C W, et al. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals. IEEE Trans Geosci Remote Sens, 2010, 48: 2087–2098CrossRefGoogle Scholar
  57. 57.
    Zhu D K, Liu Y X, Huo K, et al. A novel high-precision phase-derived-range method for direct sampling LFM radar. IEEE Trans Geosci Remote Sens, 2016, 54: 1131–1141CrossRefGoogle Scholar
  58. 58.
    Fan H Y, Ren L X, Long T, et al. A high-precision phase-derived range and velocity measurement method based on synthetic wideband pulse Doppler radar. Sci China Inf Sci, 2017, 60: 082301CrossRefGoogle Scholar
  59. 59.
    Fan H Y, Ren L X, Mao E K, et al. A high-precision method of phase-derived velocity measurement and its application in motion compensation of ISAR imaging. IEEE Trans Geosci Remote Sens, 2018, 56: 60–77CrossRefGoogle Scholar
  60. 60.
    Fan H Y, Ren L X, Mao E K. A micro-motion measurement method based on wideband radar phase derived ranging. In: Proceedings of IET International Radar Conference, Xi’an, 2013Google Scholar
  61. 61.
    Guo L Y, Fan H Y, Liu Q H, et al. A novel high-accuracy phase-derived velocity measurement method for wideband LFM radar. IEEE Geosci Remote Sens Lett, 2018. doi: 10.1109/LGRS.2018.2879491Google Scholar
  62. 62.
    Blackman S S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp Electron Syst Mag, 2004, 19: 5–18CrossRefGoogle Scholar
  63. 63.
    Aslan M S, Saranli A. A tracker-aware detector threshold optimization formulation for tracking maneuvering targets in clutter. Signal Process, 2011, 91: 2213–2221zbMATHCrossRefGoogle Scholar
  64. 64.
    Barshalom Y, Daum F, Huang J. The probabilistic data association filter. IEEE Control Syst, 2009, 29: 82–100CrossRefGoogle Scholar
  65. 65.
    Boers Y, Driessen H. Results on the modified Riccati equation: target tracking applications. IEEE Trans Aerosp Electron Syst, 2006, 42: 379–384CrossRefGoogle Scholar
  66. 66.
    Brekke E F, Hallingstad O, Glattetre J. The modified Riccati equation for amplitude-aided target tracking in heavytailed clutter. IEEE Trans Aerosp Electron Syst, 2011, 47: 2874–2886CrossRefGoogle Scholar
  67. 67.
    Li X R, Bar-Shalom Y. Stability evaluation and track life of the PDAF for tracking in clutter. IEEE Trans Autom Control, 1991, 36: 588–602CrossRefGoogle Scholar
  68. 68.
    Zhang X, Willett P, Bar-Shalom Y. Dynamic cramer-rao bound for target tracking in clutter. IEEE Trans Aerosp Electron Syst, 2005, 41: 1154–1167CrossRefGoogle Scholar
  69. 69.
    Bar-Shalom Y, Zhang X, Willett P. Simplification of the dynamic Cram´er-Rao bound for target tracking in clutter. IEEE Trans Aerosp Electron Syst, 2011, 47: 1481–1482CrossRefGoogle Scholar
  70. 70.
    Aslan M S, Saranli A, Baykal B. Tracker-aware adaptive detection: an efficient closed-form solution for the Neyman- Pearson case. Digit Signal Process, 2010, 20: 1468–1481CrossRefGoogle Scholar
  71. 71.
    Qin Y L, Wang H Q, Wang J T, et al. Dynamic waveform selection for manoeuvering target tracking in clutter. IET Radar Sonar Nav, 2013, 7: 815–825CrossRefGoogle Scholar
  72. 72.
    Jin B, Su T, Zhang W, et al. Joint optimization of predictive model and transmitted waveform for extended target tracking. In: Proceedings of International Conference on Signal Processing, Hangzhou, 2014. 1914–1918Google Scholar
  73. 73.
    Cabrera J B. Tracker-based adaptive schemes for optimal waveform selection. In: Proceedings of IEEE Radar Conference, Cincinnati, 2014. 0298–0302Google Scholar
  74. 74.
    Kyriakides I, Morrell D, Papandreou-Suppappola A. Adaptive highly localized waveform design for multiple target tracking. EURASIP J Adv Signal Process, 2012, 2012: 180CrossRefGoogle Scholar
  75. 75.
    Nguyen N H, Dogancay K, Davis L M, et al. Joint transmitter waveform and receiver path optimization for target tracking by multistatic radar system. In: Proceedings of IEEE Signal Processing Workshop on Statistical Signal Processing, Gold Coast, 2014. 444–447Google Scholar
  76. 76.
    Willett P, Niu R X, Barshalom Y. A modified PDAF based on a Bayesian detector. In: Proceedings of American Control Conference, Chicago, 2000. 2230–2234Google Scholar
  77. 77.
    Willett P, Niu R, Bar-Shalom Y. Integration of Bayes detection with target tracking. IEEE Trans Signal Process, 2001, 49: 17–29CrossRefGoogle Scholar
  78. 78.
    Aslan M S, Saranli A. Threshold optimization for tracking a nonmaneuvering target. IEEE Trans Aerosp Electron Syst, 2011, 47: 2844–2859CrossRefGoogle Scholar
  79. 79.
    Zeng T, Zheng L, Li Y, et al. Offline performance prediction of PDAF with Bayesian detection for tracking in clutter. IEEE Trans Signal Process, 2013, 61: 770–781MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Zheng L, Zeng T, Liu Q H, et al. Optimization and analysis of PDAF with Bayesian detection. IEEE Trans Aerosp Electron Syst, 2016, 52: 1986–1995CrossRefGoogle Scholar
  81. 81.
    Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Trans Aerosp Electron Syst, 2008, 44: 1042–1059CrossRefGoogle Scholar
  82. 82.
    Salmond D J. Mixture reduction algorithms for point and extended object tracking in clutter. IEEE Trans Aerosp Electron Syst, 2009, 45: 667–686CrossRefGoogle Scholar
  83. 83.
    Ceylan S, Efe M. Performance of PMHT based algorithms for underwater target tracking. In: Proceedings of Signal Processing and Communications Applications Conference, Antalya, 2009. 89–92Google Scholar
  84. 84.
    Streit R L, Luginbuhl T E. A probabilistic multi-hypothesis tracking algorithm without enumeration and pruning. In: Proceedings of the 6th Joint Service Data Fusion Symposium, 1993. 1015–1024Google Scholar
  85. 85.
    Drummond O E. Integration of features and attributes into target tracking. In: Proceedings of International Society for Optical Engineering, 2000. 610–622Google Scholar
  86. 86.
    Drummond O E. On categorical feature-aided target tracking. In: Proceedings of International Society for Optical Engineering, 2004. 544–558Google Scholar
  87. 87.
    Wieneke M, Koch W. Probabilistic tracking of multiple extended targets using random matrices. In: Proceedings of International Society for Optical Engineering, 2010Google Scholar
  88. 88.
    Willett P, Coraluppi S. MLPDA and MLPMHT applied to some MSTWG data. In: Proceedings of International Conference on Information Fusion, 2006Google Scholar
  89. 89.
    Georgescu R, Willett P. Predetection fusion with Doppler measurements and amplitude information. IEEE J Ocean Eng, 2012, 37: 56–65CrossRefGoogle Scholar
  90. 90.
    Challa S, Pulford G W. Joint target tracking and classification using radar and ESM sensors. IEEE Trans Aerosp Electron Syst, 2001, 37: 1039–1055CrossRefGoogle Scholar
  91. 91.
    Lu Q, Domrese K, Willett P, et al. A bootstrapped PMHT with feature measurements. IEEE Trans Aerosp Electron Syst, 2017, 53: 2559–2571CrossRefGoogle Scholar
  92. 92.
    Feldmann M, Franken D. Tracking of extended objects and group targets using random matrices: a new approach. In: Proceedings of International Conference on Information Fusion, 2008Google Scholar
  93. 93.
    Feldmann M, Franken D, Koch W. Tracking of extended objects and group targets using random matrices. IEEE Trans Signal Process, 2011, 59: 1409–1420CrossRefGoogle Scholar
  94. 94.
    Lan J, Li X R. Tracking of extended object or target group using random matrix–part II: irregular object. In: Proceedings of International Conference on Information Fusion, 2012. 2185–2192Google Scholar
  95. 95.
    Davey S, Gray D, Streit R. Tracking, association, and classification: a combined PMHT approach. Digit Signal Process, 2002, 12: 372–382CrossRefGoogle Scholar
  96. 96.
    Davey S, Gray D. Integrated track maintenance for the PMHT via the hysteresis model. IEEE Trans Aerosp Electron Syst, 2007, 43: 93–111CrossRefGoogle Scholar
  97. 97.
    Long T, Zheng L, Chen X L, et al. Improved probabilistic multi-hypothesis tracker for multiple target tracking with switching attribute states. IEEE Trans Signal Process, 2011, 59: 5721–5733MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Lu G Y, Bao Z. Compensation of scatterer migration through resolution cell in inverse synthetic aperture radar imaging. IEE Proc Radar Sonar Navig, 2000, 147: 80–85CrossRefGoogle Scholar
  99. 99.
    Chen V C, Martorella M. Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications. Edison: SciTech Publishing, 2014CrossRefGoogle Scholar
  100. 100.
    Fan L, Shi S, Liu Y, et al. A novel range-instantaneous-Doppler isar imaging algorithm for maneuvering targets via adaptive Doppler spectrum extraction. Prog Electrom Res C, 2015, 56: 109–118CrossRefGoogle Scholar
  101. 101.
    Du L, Su G. Adaptive inverse synthetic aperture radar imaging for nonuniformly moving targets. IEEE Geosci Remote Sens Lett, 2005, 2: 247–249CrossRefGoogle Scholar
  102. 102.
    Xing M, Wu R, Li Y, et al. New ISAR imaging algorithm based on modified Wigner-Ville distribution. IET Radar Sonar Navig, 2009, 3: 70–80CrossRefGoogle Scholar
  103. 103.
    Tao R, Zhang N, Wang Y. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar. IET Radar Sonar Navig, 2011, 5: 12–22CrossRefGoogle Scholar
  104. 104.
    Thayaparan T, Brinkman W, Lampropoulos G. Inverse synthetic aperture radar image focusing using fast adaptive joint time-frequency and three-dimensional motion detection on experimental radar data. IET Signal Process, 2010, 4: 382CrossRefGoogle Scholar
  105. 105.
    Brinkman W, Thayaparan T. Focusing inverse synthetic aperture radar images with higher-order motion error using the adaptive joint-time-frequency algorithm optimised with the genetic algorithm and the particle swarm optimisation algorithm–comparison and results. IET Signal Process, 2010, 4: 329–342CrossRefGoogle Scholar
  106. 106.
    Kang B S, Bae J H, Lee S J, et al. ISAR rotational motion compensation algorithm using polynomial phase transform. Microw Opt Technol Lett, 2016, 58: 1551–1557CrossRefGoogle Scholar
  107. 107.
    Kang B S, Kang M S, Choi I O, et al. Efficient autofocus chain for ISAR imaging of non-uniformly rotating target. IEEE Senss J, 2017, 17: 5466–5478CrossRefGoogle Scholar
  108. 108.
    Liu L, Qi M S, Zhou F. A novel non-uniform rotational motion estimation and compensation method for maneuvering targets ISAR imaging utilizing particle swarm optimization. IEEE Senss J, 2018, 18: 299–309CrossRefGoogle Scholar
  109. 109.
    Ye C M, Xu J, Peng Y N, et al. Improved Doppler centroid tracking for ISAR based on target extraction. In: Proceedings of IEEE Radar Conference, 2008Google Scholar
  110. 110.
    Pellizzari C J, Bos J, Spencer M F, et al. Performance characterization of phase gradient autofocus for inverse synthetic aperture LADAR. In: Proceedings of IEEE Aerospace Conference, Place, 2014Google Scholar
  111. 111.
    Zhou S, Xing M D, Xia X G, et al. An azimuth-dependent phase gradient autofocus (APGA) algorithm for airborne/ stationary BiSAR imagery. IEEE Geosci Remote Sens Lett, 2013, 10: 1290–1294CrossRefGoogle Scholar
  112. 112.
    Wang J F, Kasilingam D, Liu X Z, et al. ISAR minimum-entropy phase adjustment. In: Proceedings of IEEE Radar Conference, 2004. 197–200Google Scholar
  113. 113.
    Cao P, Xing M D, Sun G C, et al. Minimum entropy via subspace for ISAR autofocus. IEEE Geosci Remote Sens Lett, 2010, 7: 205–209CrossRefGoogle Scholar
  114. 114.
    Cai J J, Xu J, Wang G, et al. An effective ISAR autofocus algorithm based on single eigenvector. In: Proceedings of IEEE International Radar Conference, Guangzhou, 2016Google Scholar
  115. 115.
    Lee S H, Bae J H, Kang M S, et al. Efficient ISAR autofocus technique using eigenimages. IEEE J Sel Top Appl Earth Observations Remote Sens, 2017, 10: 605–616CrossRefGoogle Scholar
  116. 116.
    Xu J, Cai J J, Sun Y H, et al. Efficient ISAR phase autofocus based on eigenvalue decomposition. IEEE Geosci Remote Sens Lett, 2017, 14: 2195–2199CrossRefGoogle Scholar
  117. 117.
    Liu H W, Chen F, Du L, et al. Robust radar automatic target recognition algorithm based on HRRP signature. Front Electr Electron Eng China, 2012, 7: 49–55Google Scholar
  118. 118.
    Jing C, Tao Z, Mian P, et al. Radar HRRP recognition based on discriminant deep autoencoders with small training data size. Electron Lett, 2016, 52: 1725–1727CrossRefGoogle Scholar
  119. 119.
    Feng B, Chen B, Liu H W. Radar HRRP target recognition with deep networks. Pattern Recogn, 2017, 61: 379–393CrossRefGoogle Scholar
  120. 120.
    Duan P P, Li H. The radar target recognition research based on improved neural network algorithm. In: Proceedings of International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), 2014. 1074–1077Google Scholar
  121. 121.
    Penacaballero C, Cantu E, Rodriguez J. Automatic target recognition of aircraft using inverse synthetic aperture radar. 2017. ArXiv:1711.04901Google Scholar
  122. 122.
    Jiang Y, Xu J, Peng S B, et al. Identification-while-scanning of a multi-aircraft formation based on sparse recovery for narrowband radar. Sensors, 2016, 16: 1972CrossRefGoogle Scholar
  123. 123.
    Pan M, Jiang J, Kong Q P, et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network. IEEE Geosci Remote Sens Lett, 2017, 14: 1609–1613CrossRefGoogle Scholar
  124. 124.
    Dai WL, Zhang G, Zhang Y. HRRP classification based on multi-scale fusion sparsity preserving projections. Electron Lett, 2017, 53: 748–750CrossRefGoogle Scholar
  125. 125.
    Du L, Wang P H, Liu H W, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition. IEEE Trans Signal Process, 2011, 59: 3182–3196MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Zhou D Y, Shen X F, YangWL. Radar target recognition based on fuzzy optimal transformation using high-resolution range profile. Pattern Recogn Lett, 2013, 34: 256–264CrossRefGoogle Scholar
  127. 127.
    Du L, Liu H W, Bao Z, et al. Radar automatic target recognition using complex high-resolution range profiles. IET Radar Sonar Navig, 2007, 1: 18–26CrossRefGoogle Scholar
  128. 128.
    Du L, Liu H W, Bao Z. Radar HRRP statistical recognition: parametric model and model selection. IEEE Trans Signal Process, 2008, 56: 1931–1944MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Schölkopf B, Smola A J, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998, 10: 1299–1319CrossRefGoogle Scholar
  130. 130.
    Kim K T, Seo D K, Kim H T. Efficient radar target recognition using the MUSIC algorithm and invariant features. IEEE Trans Antennas Propagat, 2002, 50: 325–337CrossRefGoogle Scholar
  131. 131.
    Aldhubaib F, Shuley N V. Radar target recognition based on modified characteristic polarization states. IEEE Trans Aerosp Electron Syst, 2010, 46: 1921–1933CrossRefGoogle Scholar
  132. 132.
    Wang F Y, Guo R J, Huang Y H. Radar target recognition based on some invariant properties of the polarization scattering matrix. In: Proceedings of IEEE International Radar Conference, Place, 2011. 626–629Google Scholar
  133. 133.
    Li X, Lin L S, Shao X H, et al. A target polarization recognition method for radar echoes. In: Proceedings of International Conference on Microwave and Millimeter Wave Technology, Place, 2010. 1644–1647Google Scholar
  134. 134.
    Long T, Mao E K, He P K. Analysis and processing of modulated frequency stepped radar signal. Acta Electron Sin, 1998, 12: 84–88Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Radar Research Laboratory, School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations