Hierarchical control for generator and battery in the more electric aircraft

Abstract

This paper addresses the problem of intelligent power management for the more electric aircraft framework. The main objective is to regulate the power flow between a low voltage and a high voltage busses through control of a Buck-Boost converter unit. This approach allows the battery to help the generator when an overload scenario occurs, keeping at the same time the battery state of charge above a prescribed threshold. Moreover, in case a continued severe overload causes the battery state of charge to drop below a prescribed threshold, partial shedding of (noncritical) loads occurs. The control objectives are achieved through the design of a hierarchical control strategy based on high gain control for the low level and a finite state automaton for the high level control. Rigorous mathematical proofs of stability are provided for both low level and high level control and a detailed simulator with accurate model of the battery is presented in order to demonstrate the correctness and effectiveness of the proposed approach.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Maldonado M A, Shah N M, Cleek K J, et al. Power management and distribution system for a more-electric aircraft (madmel)-program status. In: Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, 1996. 148–153

    Google Scholar 

  2. 2

    Buonanno A, Sparaco E, Cavallo A, et al. Rate- limiter control comparison for energy storage systems in aerospace applications. In: Proceedings of the 8th International Conference on Power Electronics, Machines and Drives, 2016

    Google Scholar 

  3. 3

    Cavallo A, Canciello G, Russo A. Supervised energy management in advanced aircraft applications. In: Proceedings of 2018 European Control Conference (ECC), 2018. 2769–2774

    Google Scholar 

  4. 4

    Cavallo A, Guida B. Power management of DC aeronautical electrical networks including supercapacitors. In: Proceedings of IEEE International Conference on Industrial Technology (ICIT), 2015. 2015–2020

    Google Scholar 

  5. 5

    Canciello G, Cavallo A, Guida B. Control of energy storage systems for aeronautic applications. J Control Sci Eng, 2017, 2017: 1–9

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Canciello G, Cavallo A, Guida B. Robust control of aeronautical electrical generators for energy management applications. Int J Aerospace Eng, 2017, 2017: 1–12

    Google Scholar 

  7. 7

    Canciello G, Russo A, Guida B, et al. Supervisory control for energy storage system onboard aircraft. In: Proceedings of 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, 2018. 1–6

    Google Scholar 

  8. 8

    Cavallo A, Canciello G, Russo A. Buck-boost converter control for constant power loads in aeronautical applications. In: Proceedings of 2018 IEEE Conference on Decision and Control (CDC), 2018. 6741–6747

    Google Scholar 

  9. 9

    Guida B, Cavallo A. A petri net application for energy management in aeronautical networks. In: Proceedings of IEEE 18th Conference on Emerging Technologies Factory Automation (ETFA), 2013. 1–6

    Google Scholar 

  10. 10

    Canciello G, Cavallo A. Selective modal control for vibration reduction in flexible structures. Automatica, 2017, 75: 282–287

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Cavallo A, de Maria G, Natale C, et al. H8 strongly stabilizing bandpass controllers for flexible systems. In: Proceedings of the IEEE Conference on Decision and Control, 2006. 6543–6548

    Google Scholar 

  12. 12

    Cavallo A, de Maria G, Natale C, et al. Robust control of flexible structures with stable bandpass controllers. Automatica, 2008, 44: 1251–1260

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Tooley M. Aircraft Electrical and Electronic Systems: Principles Maintenance and Operation. Oxford: Butterworth-Heinemann, 2009

    Google Scholar 

  14. 14

    Cavallo A, Canciello G, Guida B. Energy storage system control for energy management in advanced aeronautic applications. Math Problems Eng, 2017, 2017: 1–9

    Google Scholar 

  15. 15

    Cavallo A, Canciello G, Guida B. Supervised control of buck-boost converters for aeronautical applications. Automatica, 2017, 83: 73–80

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Cavallo A, Guida B, Buonanno A, et al. Smart buck-boost converter unit op- erations for aeronautical applications. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC), 2015. 4734–4739

    Google Scholar 

  17. 17

    Ghosh S. Electrical Machines. 2nd ed. Delhi: Pearson Education, 2012

    Google Scholar 

  18. 18

    Cavallo A, Guida B. Sliding mode control for DC/DC converters. In: Proceedings of IEEE 51st Annual Conference on Decision and Control (CDC), 2012. 7088–7094

    Google Scholar 

  19. 19

    Zhou K, Doyle J. Essentials of Robust Control. Upple Saddle River: Prentice Hall International, 1998

    Google Scholar 

  20. 20

    Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Hoboken: John Wiley & Sons, 2005

    Google Scholar 

  21. 21

    Helton J, James M. Extending H-infinity Control to Nonlinear Systems: Control of Nonlinear Systems to Achieve Performance Objectives. Philadelphia: Society for Industrial and Applied Mathematics, 1999

    Google Scholar 

  22. 22

    Utkin V I. Sliding Modes in Control Optimization. Berlin: Springer-Verlag, 1992

    Google Scholar 

  23. 23

    Kosaraju KC, Cucuzzella M, Pasumarthy R, et al. Differentiation and passivity for control of brayton-moser systems. 2018. arXiv:1811.02838

    Google Scholar 

  24. 24

    Canciello G, Cavallo A, Cucuzzella M, et al. Fuzzy scheduling of robust controllers for islanded DC microgrids applications. Int J Dynam Control, 2019, 57: 1–11

    MathSciNet  Google Scholar 

  25. 25

    Cucuzzella M, Rosti S, Cavallo A, et al. Decentralized sliding mode voltage control in dc microgrids. In: Proceedings of 2017 American Control Conference (ACC), 2017. 3445–3450

    Google Scholar 

  26. 26

    Cucuzzella M, Lazzari R, Trip S, et al. Sliding mode voltage control of boost converters in DC microgrids. Control Eng Practice, 2018, 73: 161–170

    Article  Google Scholar 

  27. 27

    Cavallo A, de Maria G, Nistri P. A sliding manifold approach to the feedback control of rigid robots. Int J Robust Nonlin Contr, 1996, 6: 501–516

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Cavallo A, Natale C. Output feedback control based on a high-order sliding manifold approach. IEEE Trans Automat Contr, 2003, 48: 469–472

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Lin H, Antsaklis P J. Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans Automat Contr, 2009, 54: 308–322

    MathSciNet  Article  MATH  Google Scholar 

  30. 30

    Rejeb JB, Morăarescu I, Girard A, et al. Design of O(ɛ) dwell-time graph for stability of singularly perturbed hybrid linear systems. In: Proceedings of 2017 American Control Conference (ACC), 2017. 1193–1198

    Google Scholar 

  31. 31

    Chesi G, Colaneri P, Geromel J C, et al. A nonconservative LMI condition for stability of switched systems with guaranteed dwell time. IEEE Trans Automat Contr, 2012, 57: 1297–1302

    MathSciNet  Article  MATH  Google Scholar 

  32. 32

    Shorten R N, Narendra K S. On common quadratic lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Trans Automat Contr, 2003, 48: 618–621

    MathSciNet  Article  MATH  Google Scholar 

  33. 33

    Dorothy M, Chung S J. Switched systems with multiple invariant sets. Syst Contr Lett, 2016, 96, 103–109

    MathSciNet  Article  MATH  Google Scholar 

  34. 34

    Armstrong S, Glavin M E, Hurley W G. Comparison of battery charging algorithms for stand alone photovoltaic systems. In: Proceedings of 2008 IEEE Power Electronics Specialists Conference, 2008. 1469–1475

    Google Scholar 

  35. 35

    Cavallo A, Canciello G, Guida B, et al. Multi-objective supervisory control for DC/DC converters in advanced aeronautic applications. Energies, 2018, 11: 1–22

    Article  MATH  Google Scholar 

  36. 36

    Cavallo A, Canciello G, Guida B. Supervisory control of DC-DC bidirectional converter for advanced aeronautic applications. Int J Robust Nonlin Control, 2018, 28: 1–15

    MathSciNet  Article  MATH  Google Scholar 

  37. 37

    Hoppensteadt F C. Singular perturbations on the infinite interval. Trans Amer Math Soc, 1966, 123: 521–535

    MathSciNet  Article  MATH  Google Scholar 

  38. 38

    Levant A. Higher-order sliding modes, differentiation and output-feedback control. Int J Control, 2003, 76: 924–941

    MathSciNet  Article  MATH  Google Scholar 

  39. 39

    Zhang Z, Wang F, Guo Y, et al. Multivariable sliding mode backstepping controller design for quadrotor UAV based on disturbance observer. Sci China Inf Sci, 2018, 61: 112207

    Article  Google Scholar 

  40. 40

    Park G, Shim H. Guaranteeing almost fault-free tracking performance from transient to steady-state: a disturbance observer approach. Sci China Inf Sci, 2018, 61: 070224

    MathSciNet  Article  Google Scholar 

  41. 41

    Cavallo A, de Maria G, Nistri P. Robust control design with integral action and limited rate control. IEEE Trans Automat Contr, 1999, 44: 1569–1572

    MathSciNet  Article  MATH  Google Scholar 

  42. 42

    Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans Automat Contr, 1998, 43: 475–482

    MathSciNet  Article  MATH  Google Scholar 

  43. 43

    Hespanha JP, Morse A S. Stability of switched systems with average dwell-time. In: Proceedings of the 38th IEEE Conference on Decision and Control, 1999. 2655–2660

    Google Scholar 

  44. 44

    Tariq M, Maswood A I, Gajanayake C J, et al. Aircraft batteries: current trend towards more electric aircraft. IET Electr Syst Transport, 2017, 7: 93–103

    Article  Google Scholar 

  45. 45

    Department of Defense Interface Standards. Aircraft Electric Power Characteristics. MIL-STD-704F. 2004

Download references

Acknowledgements

This work was partially supported by ENIGMA (Grant No. 785416).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto Cavallo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cavallo, A., Russo, A. & Canciello, G. Hierarchical control for generator and battery in the more electric aircraft. Sci. China Inf. Sci. 62, 192207 (2019). https://doi.org/10.1007/s11432-018-9784-1

Download citation

Keywords

  • supervisory control
  • high gain control
  • sliding mode control
  • nonlinear control
  • robust control
  • more electric aircraft
  • switched systems