Blockchain-based multiple groups data sharing with anonymity and traceability

Abstract

Group data sharing enables information sharing between multiple parties for cooperative purposes. However, the existing schemes only consider scenarios in which all parties in the same organization want to share data. Achieving secure data sharing between users of different groups is also a relevant research issue. In this paper, we propose a blockchain-based data sharing scheme for multiple groups with anonymity and traceability. Owing to the consortium blockchain technique, any user in the system can easily verify the validity of the shared data without interacting with a third-party auditor. Additionally, the proposed scheme can not only enable data sharing between different groups with enhanced security anonymously but also achieve traceability and non-frameability.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Wang C, Wang Q, Ren K, et al. Privacy-preserving public auditing for data storage security in cloud computing. In: Proceedings of INFOCOM 2010, San Diego, 2010. 1–9

    Google Scholar 

  2. 2

    Chen X F, Li J, Ma J F, et al. New algorithms for secure outsourcing of modular exponentiations. IEEE Trans Parallel Distrib Syst, 2014, 25: 2386–2396

    Article  Google Scholar 

  3. 3

    Liu X F, Zhang Y Q, Wang B Y, et al. Mona: secure multi-owner data sharing for dynamic groups in the cloud. IEEE Trans Parallel Distrib Syst, 2013, 24: 1182–1191

    Article  Google Scholar 

  4. 4

    Wang C, Chow S S M, Wang Q, et al. Privacy-preserving public auditing for secure cloud storage. IEEE Trans Comput, 2013, 62: 362–375

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Chen X F, Huang X Y, Li J, et al. New algorithms for secure outsourcing of large-scale systems of linear equations. IEEE Trans Inform Forensic Secur, 2015, 10: 69–78

    Article  Google Scholar 

  6. 6

    Zhang X Y, Jiang T, Li K C, et al. New publicly verifiable computation for batch matrix multiplication. Inf Sci, 2019, 479: 664–678

    Article  Google Scholar 

  7. 7

    Wang J F, Chen X F, Huang X Y, et al. Verifiable auditing for outsourced database in cloud computing. IEEE Trans Comput, 2015, 64: 3293–3303

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Chen X F, Li J, Weng J F, et al. Verifiable computation over large database with incremental updates. IEEE Trans Comput, 2016, 65: 3184–3195

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Zhang Z W, Chen X F, Ma J F, et al. SLDS: secure and location-sensitive data sharing scheme for cloud-assisted cyber-physical systems. Future Gener Comput Syst, 2018. doi: https://doi.org/10.1016/j.future.2018.01.025

    Google Scholar 

  10. 10

    Shen J, Zhou T Q, Chen X F, et al. Anonymous and traceable group data sharing in cloud computing. IEEE Trans Inform Forensic Secur, 2018, 13: 912–925

    Article  Google Scholar 

  11. 11

    Chen X F, Li J, Huang X Y, et al. New publicly verifiable databases with efficient updates. IEEE Trans Dependable Secure Comput, 2015, 12: 546–556

    Article  Google Scholar 

  12. 12

    Zhang Z W, Chen X F, Li J, et al. HVDB: a hierarchical verifiable database scheme with scalable updates. J Ambient Intell Human Comput, 2018, 53: 1–13

    Google Scholar 

  13. 13

    Yves D, Jean-Jacque Q, Ayda S. Remote integrity checking. In: Integrity and internal control in information systems VI. Boston: Springer, 2004. 1–11

    Google Scholar 

  14. 14

    Gazzoni Filho D L, Barreto P S L M. Demonstrating data possession and uncheatable data transfer. IACR Cryptol ePrint Archive, 2006, 2006: 150

    Google Scholar 

  15. 15

    Ateniese G, Burns R, Curtmola R, et al. Provable data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, Alexandria, 2007. 598–609

    Google Scholar 

  16. 16

    Yang K, Jia X H. An efficient and secure dynamic auditing protocol for data storage in cloud computing. IEEE Trans Parallel Distrib Syst, 2013, 24: 1717–1726

    Article  Google Scholar 

  17. 17

    Yuan J, Yu S. Efficient public integrity checking for cloud data sharing with multi-user modification. In: Proceedings of INFOCOM 2014, Toronto, 2014. 2121–2129

    Google Scholar 

  18. 18

    Erway C C, Küpçü A, Papamanthou C, et al. Dynamic provable data possession. ACM Trans Inf Syst Secur, 2015, 17: 1–29

    Article  Google Scholar 

  19. 19

    Yuan H R, Chen X F, Jiang T, et al. DedupDUM: secure and scalable data deduplication with dynamic user management. Inf Sci, 2018, 456: 159–173

    Article  Google Scholar 

  20. 20

    Wang J F, Chen X F, Li J, et al. Towards achieving flexible and verifiable search for outsourced database in cloud computing. Future Gener Comput Syst, 2017, 67: 266–275

    Article  Google Scholar 

  21. 21

    Zhang X Y, Chen X F, Wang J F, et al. Verifiable privacy-preserving single-layer perceptron training scheme in cloud computing. Soft Comput, 2018, 22: 7719–7732

    Article  Google Scholar 

  22. 22

    Ma X, Zhang F G, Chen X F, et al. Privacy preserving multi-party computation delegation for deep learning in cloud computing. Inf Sci, 2018, 459: 103–116

    Article  Google Scholar 

  23. 23

    Wang Q, Wang C, Ren K, et al. Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans Parallel Distrib Syst, 2011, 22: 847–859

    Article  Google Scholar 

  24. 24

    Huang H, Chen X F, Wu Q H, et al. Bitcoin-based fair payments for outsourcing computations of fog devices. Future Gener Comput Syst, 2018, 78: 850–858

    Article  Google Scholar 

  25. 25

    Huang H, Li K C, Chen X F. Blockchain-based fair three-party contract signing protocol for fog computing. Concurr Computat Pract Exper, 2018, 28: e4469

    Article  Google Scholar 

  26. 26

    Yang C S, Chen X F, Xiang Y. Blockchain-based publicly verifiable data deletion scheme for cloud storage. J Netw Comput Appl, 2018, 103: 185–193

    Article  Google Scholar 

  27. 27

    Liang J, Han W L, Guo Z Q, et al. DESC: enabling secure data exchange based on smart contracts. Sci China Inf Sci, 2018, 61: 049102

    Article  Google Scholar 

  28. 28

    Gaetani E, Aniello L, Baldoni R, et al. Blockchain-based database to ensure data integrity in cloud computing environments. In: Proceedings of Italian Conference on Cybersecurity, Venice, 2017. 1816: 146–155

    Google Scholar 

  29. 29

    Ghoshal S, Paul G. Exploiting block-chain data structure for auditorless auditing on cloud data. In: Proceedings of International Conference on Information Systems Security, Jaipur, 2016. 10063: 359–371

    Article  Google Scholar 

  30. 30

    Chaum D, van Heyst E. Group signatures. In: Proceedings of Workshop on the Theory and Application of of Cryptographic Techniques, Berlin, 1991. 257–265

    Google Scholar 

  31. 31

    Nakamoto S. Bitcoin: a peer-to-peer electronic cash system. 2008. https://bitcoin.org/bitcoin.pdf

    Google Scholar 

  32. 32

    Merkle R. Secrecy, authentication, and public key systems. Dissertation for Ph.D. Degree. Stanford: Stanford University, 1979

    Google Scholar 

  33. 33

    Coelho F. An (almost) constant-effort solution-verification proof-of-work protocol based on merkle trees. In: Proceedings of International Conference on Cryptology in Africa, Casablanca, 2008. 80–93

    Google Scholar 

  34. 34

    Ateniese G, Camenisch J, Joye M, et al. A practical and provably secure coalition-resistant group signature scheme. In: Proceedings of Annual International Cryptology Conference, Berlin, 2000. 255–270

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Cryptography Development Fund(Grant No. MMJJ20180110).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Chen, X. & Wang, J. Blockchain-based multiple groups data sharing with anonymity and traceability. Sci. China Inf. Sci. 63, 130101 (2020). https://doi.org/10.1007/s11432-018-9781-0

Download citation

Keywords

  • multiple groups
  • data sharing
  • blockchain
  • anonymity
  • traceability