Abstract
High-power fiber laser has been emerged great potential in a wide range of applications and becomes a robust candidate for high energy solid state laser system. To further increase the output brightness of single-channel fiber laser, high-brightness pump sources and high-power-handling passive components should be fabricated and utilized in the fiber laser systems, in addition to the advanced techniques for multiple nonlinear effects managements. The state-of-the-art high power fiber lasers are reviewed, in terms of narrow-linewidth fiber lasers, broadband fiber lasers and fiber lasers at 2 μm. Coherent beam combining is a promising technique to obtain higher output power while maintaining excellent beam quality simultaneously, which breaks through the bottlenecks of single-channel fiber laser. Based on a series of key techniques for coherent beam combining, high-power coherent beam combining of fiber lasers could be enabled with high combining efficiency. In this paper, we review the progress of high-power fiber lasers and their coherent beam combining in the recent decade, particularly the relevant work in our group. The future prospects of fiber lasers and coherent beam combining technique are also discussed.
This is a preview of subscription content, access via your institution.
References
- 1
Snitzer E. Proposed fiber cavities for optical masers. J Appl Phys, 1961, 32: 36–39
- 2
Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives. J Opt Soc Am B, 2010, 27: 63–92
- 3
Dong L, Samson B. Fiber Lasers: Basics, Technology, and Applications. Boca Raton: CRC Press, 2016
- 4
Zervas M N, Codemard C A. High power fiber lasers: a review. IEEE J Sel Top Quantum Electron, 2014, 20: 219–241
- 5
Liu Z, Zhou P, Xu X, et al. Coherent Beam Combining of High Average Power Fiber Lasers. Beijing: National Defense Industry Press, 2016
- 6
Stiles E. New developments in IPG fiber laser technology. In: Proceedings of the 5th International Workshop on Fiber Lasers, 2009
- 7
Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications [Invited]. Appl Opt, 2014, 53: 6554–6568
- 8
Huang L, Xu J, Ye J, et al. Power scaling of linearly polarized random fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8
- 9
Shi W, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction. J Opt Soc Am B, 2017, 34: A1
- 10
Zhou J, Wang P, Zhou P. High power fiber laser technology: introduction. Chin J Laser, 2017, 44: 201000
- 11
Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt Express, 2008, 16: 13240–13266
- 12
Zhu J, Zhou P, Ma Y, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Opt Express, 2011, 19: 18645–18654
- 13
Ke W W, Wang X J, Bao X F, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers. Opt Express, 2013, 21: 14272–14281
- 14
Otto H J, Jauregui C, Limpert J, et al. Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality. In: Proceedings of SPIE, San Francisco, 2015. 97280E
- 15
Zervas M N. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability. In: Proceedings of SPIE, San Francisco, 2018. 1051205
- 16
Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser. In: Advanced Solid State Lasers. Washington: Optical Society of America, 2013. ATh4A.2
- 17
Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE J Sel Top Quantum Electron, 2005, 11: 567–577
- 18
Brignon A. Coherent Laser Beam Combining. Weinheim: John Wiley & Sons, 2013
- 19
Liu Z J, Zhou P, Xu X J, et al. Coherent beam combining of high power fiber lasers: progress and prospect. Sci China Technol Sci, 2013, 56: 1597–1606
- 20
Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling. In: Proceedings of SPIE, San Francisco, 2016. 97300Y
- 21
Ma Y, Wang X, Zhou P, et al. Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique. Opt Lasers Eng, 2011, 49: 1089–1092
- 22
Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array. Opt Lett, 2012, 37: 3978–3980
- 23
Liu Z, Ma P, Su R, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect. J Opt Soc Am B, 2017, 34: A7
- 24
Zhou P, Wang X, Ma Y, et al. Active and passive coherent beam combining of thulium-doped fiber lasers. In: Proceedings of SPIE, San Francisco, 2010. 784307
- 25
Ma P, Tao R, Su R, et al. 189 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality. Opt Express, 2016, 24: 4187–4195
- 26
Yu H, Wang X, Zhang H, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm. J Lightwave Technol, 2016, 34: 4271–4277
- 27
Jin X, Wang X, Zhou P, et al. Powerful 2 μm silica fiber sources: a review of recent progress and prospects. J Electron Sci Tech, 2015, 13: 315–327
- 28
Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt Lett, 2017, 42: 1–4
- 29
Du X, Zhang H, Xiao H, et al. High-power random distributed feedback fiber laser: from science to application. Annalen Der Physik, 2016, 528: 649–662
- 30
Xu J, Zhou P, Liu W, et al. Exploration in performance scaling and new application avenues of superfluorescent fiber source. IEEE J Sel Top Quantum Electron, 2018, 24: 1–10
- 31
Xiao H, Zhou P, Wang X, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photon Technol Lett, 2012, 24: 1088–1090
- 32
Xiao H, Zhou P, Wang X L, et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W. Laser Phys Lett, 2013, 10: 065102
- 33
Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump. Appl Opt, 2015, 54: 8166
- 34
Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W. Opt Lett, 2017, 42: 1193
- 35
Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression. J Opt Soc Am B, 2016, 33: 1392–1398
- 36
Yang H, Zhao W, Si J, et al. 126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier. J Opt, 2016, 18: 125801
- 37
Gu G, Liu Z, Kong F, et al. Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm. Opt Express, 2015, 23: 17693
- 38
Seah C P, Ng T Y, Chua S. 400 W Ytterbium-doped fiber oscillator at 1018nm. In: Advanced Solid State Lasers. Washington: Optical Society of America, 2015. ATu2A.33
- 39
Chen X, Wang J, Zhao X, et al. 307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management. Chin Opt Lett, 2017, 15: 071407
- 40
Zhang H, Xiao H, Zhou P, et al. A high-power all-fiberized Yb-doped laser directly pumped by a laser diode emitting at long wavelength. Laser Phys Lett, 2013, 10: 095106
- 41
Huang L, Zhang H, Wang X, et al. Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 C. IEEE Photonic J, 2016, 8: 1–7
- 42
Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers. Laser Phys Lett, 2007, 4: 93–102
- 43
Zhou P, Wang X, Xiao H, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges. Laser Phys, 2012, 22: 823–831
- 44
Pask H M, Carman R J, Hanna D C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region. IEEE J Sel Top Quantum Electron, 1995, 1: 2–13
- 45
Zhang H W, Xiao H, Zhou P, et al. 119-W monolithic single-mode 1173-nm Raman fiber laser. IEEE Photonic J, 2013, 5: 1501706
- 46
Zhang H, Zhou P, Xiao H, et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Phys Lett, 2014, 11: 075104
- 47
Du X, Zhang H, Wang X, et al. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Opt Lett, 2016, 41: 571–574
- 48
Xiao H, Zhang H, Xu J, et al. 120 W monolithic Yb-doped fiber oscillator at 1150 nm. J Opt Soc Am B, 2017, 34: A63
- 49
Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Opt Express, 2015, 23: 17138–17144
- 50
Jin X, Lou Z, Chen Y, et al. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser. Sci Rep, 2017, 7: 42402
- 51
Chen Y, Xiao H, Xu J, et al. Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain. Appl Opt, 2016, 55: 3824–3828
- 52
Wang J, Li C, Yan D. High power composite cavity fiber laser oscillator at 1120 nm. Opt Commun, 2017, 405: 318–322
- 53
Gu Y, Lei C, Liu J, et al. Side-pumping combiner for high-power fiber laser based on tandem pumping. Opt Eng, 2017, 56: 1
- 54
Xiao Q, Yan P, Ren H, et al. A side-pump coupler with refractive index valley configuration for fiber lasers and amplifiers. J Lightwave Technol, 2013, 31: 2715–2722
- 55
Lei C, Chen Z, Leng J, et al. The influence of fused depth on the side-pumping combiner for all-fiber lasers and amplifiers. J Lightwave Technol, 2017, 35: 1922–1928
- 56
Guo W, Chen Z, Li J, et al. A system for splicing double cladding fiber and glass cone and its splicing method. China Patent, CN103217741A, 2014–09-17
- 57
Zhou X F, Chen Z L, Hou J, et al. High power fiber end-cap with 6 kW output power. High Power Laser Part Beams, 2015, 27: 27120101
- 58
Lei C, Gu Y, Chen Z, et al. Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW. Opt Express, 2018, 26: 10421–10427
- 59
Zhou X, Chen Z, Wang Z, et al. Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling. Appl Opt, 2016, 55: 4001–4004
- 60
Zhi D, Ma Y, Chen Z, et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality. Opt Lett, 2016, 41: 2217–2220
- 61
Zhi D, Zhang Z, Ma Y, et al. Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system. Sci Rep, 2017, 7: 2199
- 62
Guo W, Chen Z, Zhou H, et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers. IEEE Photonic J, 2014, 6: 1–6
- 63
Zhou H, Chen Z, Zhou X, et al. All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers. Chin Opt Lett, 2015, 13: 061406–61409
- 64
Li R, Xiao H, Leng J, et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application. Laser Phys Lett, 2017, 14: 125102
- 65
Gu Y, Leng J, Xiao H, et al. 5 kW all-fiber 1018 nm laser combining. High Power Laser Part Beams, 2017, 29: 29120101
- 66
Agrawal G. Nonlinear Fiber Optics. Manhattan: Academic Press, 2012
- 67
Lü H, Zhou P, Wang X, et al. Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance. Opt Express, 2015, 23: 18117–18132
- 68
Lu H, Zhou P, Wang X, et al. Theoretical and numerical study of the threshold of stimulated brillouin scattering in multimode fibers. J Lightwave Technol, 2015, 33: 4464–4470
- 69
Leng J Y, Wang X L, Xiao H, et al. Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification. Laser Phys Lett, 2012, 9: 532–536
- 70
Huang L, Li L, Ma P, et al. 434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal. Opt Express, 2016, 24: 26722–26731
- 71
Ma P, Zhou P, Ma Y, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality. Appl Opt, 2013, 52: 4854
- 72
Huang L, Zhou Z C, Shi C, et al. Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser. Sci China Technol Sci, 2018, 61: 971–981
- 73
Su R, Tao R, Wang X, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression. Laser Phys Lett, 2017, 14: 085102
- 74
Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl Opt, 1972, 11: 2489
- 75
Wang Y, Xu C Q, Po H. Analysis of Raman and thermal effects in kilowatt fiber lasers. Opt Commun, 2004, 242: 487–502
- 76
Jauregui C, Limpert J, Tünnermann A. Derivation of Raman treshold formulas for CW double-clad fiber amplifiers. Opt Express, 2009, 17: 8476–8490
- 77
Liu W, Ma P, Lv H, et al. General analysis of SRS-limited high-power fiber lasers and design strategy. Opt Express, 2016, 24: 26715–26721
- 78
Liu W, Ma P, Lv H, et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source. Opt Express, 2016, 24: 8708–8717
- 79
Liu W, Ma P, Miao Y, et al. Intrinsic mechanism for spectral evolution in single-frequency raman fiber amplifier. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8
- 80
Zhang L, Jiang H, Cui S, et al. Integrated ytterbium-Raman fiber amplifier. Opt Lett, 2014, 39: 1933–1936
- 81
Zhang H, Xiao H, Zhou P, et al. High power Yb-Raman combined nonlinear fiber amplifier. Opt Express, 2014, 22: 10248–10255
- 82
Zhang H, Tao R, Zhou P, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm. IEEE Photon Technol Lett, 2015, 27: 628–630
- 83
Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser. Opt Express, 2016, 24: 6758–6768
- 84
Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers. Opt Express, 2012, 20: 24545–24558
- 85
Smith A V, Smith J J. Mode instability in high power fiber amplifiers. Opt Express, 2011, 19: 10180–10192
- 86
Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt Express, 2011, 19: 13218–13224
- 87
Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems. Opt Express, 2012, 20: 12912–12925
- 88
Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt Express, 2012, 20: 11407–11422
- 89
Hu I, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers. In: Proceedings of SPIE, San Francisco, 2013. 860109
- 90
Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers. Opt Express, 2013, 21: 1944
- 91
Tao R M, Ma P F, Wang X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model. IEEE J Quantum Electron, 2015, 51: 1–6
- 92
Tao R, Ma P, Wang X, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers. Laser Phys Lett, 2015, 12: 085101
- 93
Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE J Sel Top Quantum Electron, 2018, 24: 1–19
- 94
Tao R, Ma P, Wang X, et al. 13 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities. Photon Res, 2015, 3: 86–93
- 95
Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength. J Opt, 2015, 17: 045504
- 96
Dajani I, Flores A, Holten R, et al. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers. In: Proceedings of SPIE, San Francisco, 2016. 972801
- 97
Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Opt Lett, 2011, 36: 3118–3120
- 98
Zheng Y, Yang Y, Wang J, et al. 108 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt Express, 2016, 24: 12063–12071
- 99
Karow M, Basu C, Kracht D, et al. TEM 00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power. Opt Express, 2012, 20: 5319–5324
- 100
Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power. In: Proceedings of SPIE, San Francisco, 2014. 896407
- 101
Zhou P, Huang L, Xu J M, et al. High power linearly polarized fiber laser: generation, manipulation and application. Sci China Technol Sci, 2017, 60: 1784–1800
- 102
Ruffin A B, Li M J, Chen X, et al. Brillouin gain analysis for fibers with different refractive indices. Opt Lett, 2005, 30: 3123–3125
- 103
Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. In: Proceedings of SPIE, San Francisco, 2014. 89611R
- 104
Xiao H, Dong X L, Zhou P, et al. A 168-W high-power single-frequency amplifier in an all-fiber configuration. Chin Phys B, 2012, 21: 034207
- 105
Wang X L, Zhou P, Xiao H, et al. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration 310 W single-frequency all-fiber laser. Laser Phys Lett, 2012, 9: 591–595
- 106
Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt Lett, 2014, 39: 666–669
- 107
Jeong Y, Nilsson J, Sahu J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. Opt Lett, 2005, 30: 459–461
- 108
Hildebrandt M, Frede M, Kwee P, et al. Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. Opt Express, 2006, 14: 11071–11076
- 109
Gray S, Liu A, Walton D T, et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier. Opt Express, 2007, 15: 17044–17050
- 110
Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator poweramplifier sources up to 500 W. IEEE J Sel Top Quantum Electron, 2007, 13: 546–551
- 111
Mermelstein M D, Yablon A D, Headley C, et al. All-fiber 194 W single-frequency single-mode Yb-doped masteroscillator power-amplifier. In: Proceedings of SPIE, San Francisco, 2008. 68730L
- 112
Dajani I, Vergien C, Robin C, et al. Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output. Opt Express, 2009, 17: 24317–24333
- 113
Zeringue C, Vergien C, Dajani I. Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition. Opt Lett, 2011, 36: 618–620
- 114
Zhu C, Hu I, Ma X, et al. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output. In: Advances in Optical Materials. Washington: Optical Society of America, 2011. AMC5
- 115
Theeg T, Sayinc H, Neumann J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power. IEEE Photon Technol Lett, 2012, 24: 1864–1867
- 116
Zhang L, Cui S, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Opt Express, 2013, 21: 5456–5462
- 117
Theeg T, Ottenhues C, Sayinc H, et al. Core-pumped single-frequency fiber amplifier with an output power of 158 W. Opt Lett, 2016, 41: 9–12
- 118
Wang X, Zhou P, Xiao H, et al. Narrow linewidth all-fiber laser with 666 W power output. High Power Laser Particle Beams, 2012, 24: 1261–1262
- 119
Ran Y, Tao R, Ma P, et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality. Appl Opt, 2015, 54: 7258–7263
- 120
Beier F, Hupel C, Kuhn S, et al. Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier. Opt Express, 2017, 25: 14892–14899
- 121
Li T, Zha C, Sun Y, et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noisesource phase-modulated laser. Laser Phys, 2018, 28: 105101
- 122
Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier. Opt Lett, 2016, 41: 5202–5205
- 123
Platonov N, Yagodkin R, De La Cruz J, et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. In: Proceedings of SPIE, San Francisco, 2018. 105120E
- 124
Edgecumbe J, Bjrk D, Galipeau J, et al. Kilowatt-level PM amplifiers for beam combining. In: Frontiers in Optics. Washington: Optical Society of America, 2008. FTuJ2
- 125
Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 14 kW fiber amplifier. Opt Lett, 2010, 35: 1542–1544
- 126
Guintrand C, Edgecumbe J, Farley K, et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier. In: Laser and Electro-Optics. Washington: Optical Society of America, 2014. JW2A.23
- 127
Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers. Opt Express, 2014, 22: 17735–17744
- 128
Yagodkin R, Platonov N, Yusim A, et al. > 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth. In: Proceedings of SPIE, San Francisco, 2015. 972807
- 129
Xu Y, Fang Q, Qin Y, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser. Appl Opt, 2015, 54: 9419–9421
- 130
Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power. In: Lasers and Electro-Optics. Washington: Optical Society of America, 2015. CJ 11 4
- 131
Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultrahigh brightness pump. In: Proceedings of SPIE, San Francisco, 2015. 972806
- 132
Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers. In: Proceedings of SPIE, San Francisco, 2015. 934704
- 133
Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Opt Express, 2016, 24: 6011–6020
- 134
Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition. Opt Lett, 2016, 41: 3964–3967
- 135
Kanskar M, Zhang J, Kaponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications. In: Proceedings of SPIE, San Francisco, 2018. 105120F
- 136
Yu H, Zhang H, lv H, et al. 315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser. Appl Opt, 2015, 54: 4556–4560
- 137
Yu H, Wang X, Tao R, et al. 15 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator. Appl Opt, 2014, 53: 8055–8059
- 138
Yang B, Zhang H, Wang X, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW. J Opt, 2016, 18: 105803
- 139
Yang B, Zhang H, Shi C, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme. Opt Express, 2016, 24: 27828–27835
- 140
Yang B, Zhang H, Shi C, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability. J Opt, 2018, 20: 025802
- 141
Yang B, Zhang H, Ye Q, et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings. Chin Opt Lett, 2018, 16: 031407
- 142
Huang L, Wang W, Leng J, et al. Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier. IEEE Photon Technol Lett, 2014, 26: 33–36
- 143
Xu J, Huang L, Leng J, et al. 101 kW superfluorescent source in all-fiberized MOPA configuration. Opt Express, 2015, 23: 5485–5490
- 144
Zhou P, Xiao H, Leng J, et al. High-power fiber lasers based on tandem pumping. J Opt Soc Am B, 2017, 34: A29
- 145
Zhang H, Yang B, Wang X, et al. Home-produced fiber Bragg gratings-based all-fiber oscillator with the output power exceeding 5.2 kW. Chin J Laser, 2018, 45: 0415002
- 146
Xu J M, Ye J, Zhou P, et al. Tandem pumping architecture enabled high power random fiber laser with neardiffraction- limited beam quality. Sci China Technol Sci, 2019, 62: 80–86
- 147
Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing. In: Proceedings of SPIE, San Francisco, 2017. 100830Y
- 148
Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In: Proceedings of SPIE, San Francisco, 2018. 105120C
- 149
Yang B, Shi C, Zhang H, et al. Monolithic fiber laser oscillator with record high power. Laser Phys Lett, 2018, 15: 075106
- 150
Xiao Y, Brunet F, Kanskar M, et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks. Opt Express, 2012, 20: 3296–3301
- 151
Yu H, Kliner D A V, Liao K, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes. In: Proceedings of SPIE, San Francisco, 2012. 82370G
- 152
Ruppik S, Becker F, Grundmann F, et al. High-power disk and fiber lasers: a performance comparison. In: Proceedings of SPIE, San Francisco, 2012. 82350V
- 153
Khitrov V, Minelly J D, Tumminelli R, et al. 3kW single-mode direct diode-pumped fiber laser. In: Proceedings of SPIE, San Francisco, 2014. 89610V
- 154
Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression. In: Proceedings of SPIE, San Francisco, 2016. 972805
- 155
Tanaka D. High power fibre lasers for industrial applications. In: Proceedings of Conference on Lasers and Electro- Optics Pacific Rim, 2017
- 156
Yao T, Ji J, Nilsson J. Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers. J Lightwave Technol, 2014, 32: 429–434
- 157
Liu Z, Zhao Y. Investigation on the nonlinear problem in high power fiber laser. In: Proceedings of LASER 2016, Beijing. 2016
- 158
Lin A, Zhan H, Peng K, et al. 10 kW-level pump-gain integrated functional laser fiber. High Power Laser Part Beams, 2018, 30: 60101
- 159
Lin H H, Tang X, Li C Y, et al. 10.6 kW high-brightness cascaded-end-pumped monolithic fiber lasers directly pumped by laser diodes (in Chinese). Chin J Laser, 2018, 45: 0315001
- 160
Shiner B. The impact of fiber laser technology on the world wide material processing market. In: Proceedings of CLEO: Applications and Technology 2013. Washington: Optical Society of America, 2013. AF2J.1
- 161
Wang J, Yan D, Xiong S, et al. High power all-fiber amplifier with different seed power injection. Opt Express, 2016, 24: 14463–14469
- 162
Zhan H, Liu Q, Wang Y, et al. 5 kW GTWave fiber amplifier directly pumped by commercial 976 nm laser diodes. Opt Express, 2016, 24: 27087–27095
- 163
Fang Q, Li J, Shi W, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes. IEEE Photonic J, 2017, 9: 1–7
- 164
Wang J, Yan D, Xiong S, et al. Mode instability in high power all-fiber amplifier with large-mode-area gain fiber. Opt Commun, 2017, 396: 123–126
- 165
Xiao Q, Li D, Huang Y, et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser. Laser Phys, 2018, 28: 125107
- 166
Jackson S D, Sabella A, Lancaster D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm. IEEE J Sel Top Quantum Electron, 2007, 13: 567–572
- 167
Geng J, Wang Q, Lee Y, et al. Development of eye-safe fiber lasers near 2 μm. IEEE J Sel Top Quant Electron, 2014, 20: 150–160
- 168
Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2 μm Doppler lidar for wind measurements. Opt Eng, 2007, 46: 116201
- 169
Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm. Lasers Surg Med, 2005, 37: 53–58
- 170
Gesierich W, Reichenberger F, Fertl A, et al. Endobronchial therapy with a thulium fiber laser (1940 nm). J Thorac Cardiov Sur, 2014, 147: 1827–1832
- 171
Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 m thulium fiber laser. Opt Laser Tech, 2012, 44: 2095–2099
- 172
Scholle K, Sch¨afer M, Lamrini S, et al. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications. In: Proceedings of SPIE, San Francisco, 2018. 105120O
- 173
Simakov N, Davidson A, Hemming A, et al. Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-μm source. In: Proceedings of SPIE, San Francisco, 2012. 82373K
- 174
Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt Express, 2012, 20: 7046–7053
- 175
Kubat I, Petersen C R, Møller U V, et al. Thulium pumped mid-infrared 0.9-9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt Express, 2014, 22: 3959–3967
- 176
Petersen C R, Møller U V, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photon, 2014, 8: 830–834
- 177
Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Opt Lett, 2009, 34: 1204–1206
- 178
Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling. IEEE J Sel Top Quantum Electron, 2009, 15: 85–92
- 179
Ehrenreich T, Leveille R, Majid I, et al. 1-kW, all-glass Tm: fiber laser. In: Proceedings of SPIE, San Francisco, 2010. 758016
- 180
Hemming A, Simakov N, Davidson A, et al. A monolithic cladding pumped holmium-doped fibre laser. In: Proceedings of CLEO: Science and Innovations. San Jose: Optical Society of America, 2013. CW1M.1
- 181
Walbaum T, Heinzig M, Schreiber T, et al. Monolithic thulium fiber laser with 567 W output power at 1970 nm. Opt Lett, 2016, 41: 2632
- 182
Newburgh G A, Zhang J, Dubinskii M. Tm-doped fiber laser resonantly diode-cladding-pumped at 1620 nm. Laser Phys Lett, 2017, 14: 125101
- 183
Moulton P F. High power Tm: silica fiber lasers: current status, prospects and challenges. In: Proceedings of Lasers and Electro-Optics Europe. San Jose: Optical Society of America, 2011. TF2 3
- 184
Creeden D, Johnson B R, Rines G A, et al. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations. Opt Express, 2014, 22: 29067–29080
- 185
Meleshkevich M, Platonov N, Gapontsev D, et al. 415 W single-mode CW thulium fiber laser in all-fiber format. In: Proceedings of European Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2007. CP2 3
- 186
Wang X, Zhou P, Zhang H, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers. Opt Lett, 2014, 39: 4329–4332
- 187
Wang Y, Yang J, Huang C, et al. High power tandem-pumped thulium-doped fiber laser. Opt Express, 2015, 23: 2991–2998
- 188
Jin X, Lee E, Luo J, et al. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping. Opt Lett, 2018, 43: 1431–1434
- 189
Sincore A, Bradford J D, Cook J, et al. High average power thulium-doped silica fiber lasers: review of systems and concepts. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8
- 190
Shardlow P C, Jain D, Parker R, et al. Optimising Tm-doped silica fibres for high lasing efficiency. In: Proceedings of the European Conference on Lasers and Electro-Optics. Washington: Optical Society of America, 2015. CJ 14 3
- 191
Tumminelli R, Petit V, Carter A, et al. Highly doped and highly efficient Tm doped fiber laser. In: Proceedings of SPIE, San Francisco, 2018. 105120M
- 192
Shardlow P C, Simakov N, Billaud A, et al. Holmium doped fibre optimised for resonant cladding pumping. In: Proceedings of Lasers and Electro-Optics. Washington: Optical Society of America, 2017. CJ 11 4
- 193
Wang X, Zhou P, Wang X, et al. 102 W monolithic single frequency Tm-doped fiber MOPA. Opt Express, 2013, 21: 32386–32392
- 194
Wang X, Jin X, Wu W, et al. 310-W single frequency Tm-Doped all-fiber MOPA. IEEE Photon Technol Lett, 2015, 27: 677–680
- 195
Wang X, Jin X, Zhou P, et al. All-fiber-integrated narrowband nanosecond pulsed Tm-doped fiber MOPA. IEEE Photon Technol Lett, 2015, 27: 1473–1476
- 196
Wang X, Jin X, Zhou P, et al. All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2 μm with mJ-level pulse energy. Appl Opt, 2016, 55: 1941–1945
- 197
Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fibre amplified spontaneous emission sources. J Opt, 2015, 17: 045702
- 198
Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fiber superfluorescent source with ultranarrow linewidth. IEEE Photonic J, 2015, 7: 1–6
- 199
Wang X, Jin X, Zhou P, et al. High power, widely tunable, narrowband superfluorescent source at 2 m based on a monolithic Tm-doped fiber amplifier. Opt Express, 2015, 23: 3382–3389
- 200
Wang X, Zhou P, Miao Y, et al. Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser. J Opt Soc Am B, 2014, 31: 2476
- 201
Jin X, Du X, Wang X, et al. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser. Sci Rep, 2016, 6: 30052
- 202
Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm. Opt Express, 2016, 24: 975–992
- 203
Tao R, Zhou P, Xiao H, et al. Theoretical study of high power mode instabilities in 2 μm thulium-doped fiber amplifiers. In: Proceedings of the 16th International Conference on Laser Optics, St. Petersburg, 2014
- 204
Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system. IEEE J Sel Top Quantum Electron, 2009, 15: 320–327
- 205
Yang Y, Hu M, He B, et al. Passive coherent beam combining of four Yb-doped fiber amplifier chains with injectionlocked seed source. Opt Lett, 2013, 38: 854–856
- 206
Huo Y, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier. Opt Express, 2004, 12: 6230–6239
- 207
Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Appl Phys Lett, 2005, 86: 201118
- 208
Wang B, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array. Opt Lett, 2009, 34: 863–865
- 209
Chen Z, Hou J, Zhou P, et al. Mutual injection-locking and coherent combining of two individual fiber lasers. IEEE J Quantum Electron, 2008, 44: 515–519
- 210
Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup. Opt Express, 2007, 15: 6464–6469
- 211
Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl Phys Lett, 2008, 92: 021120
- 212
Rothenberg J E. Passive coherent phasing of fiber laser arrays. In: Proceedings of SPIE, San Francisco, 2008. 687315
- 213
Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt Lett, 2011, 36: 2686–2688
- 214
Wang X, Zhou P, Ma Y, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm. Opt Lett, 2011, 36: 3121–3123
- 215
Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array. Appl Phys B, 2012, 107: 785–790
- 216
Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light. In: Proceedings of SPIE, San Francisco, 2016. 97281Y
- 217
McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam. IEEE J Sel Top Quantum Electron, 2014, 20: 174–181
- 218
Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of large number of PM fibres in 2-D fibre array. Electron Lett, 2006, 42: 1024–1025
- 219
Huang Z, Tang X, Luo Y, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method. Rev Sci Instrum, 2016, 87: 033109
- 220
Su R, Zhou P, Wang X, et al. Phase locking of a coherent array of 32 fiber lasers. High Power Laser Part Beams, 2014, 26: 10101
- 221
Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers. Opt Express, 2011, 19: 17053–17058
- 222
Bellanger C, Toulon B, Primot J, et al. Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining. Opt Lett, 2010, 35: 3931–3933
- 223
Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses. Opt Express, 2010, 18: 27827–27835
- 224
Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser. Opt Lett, 2016, 41: 3439–3442
- 225
Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays. IEEE J Sel Top Quantum Electron, 2007, 13: 460–472
- 226
Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays. Opt Express, 2008, 16: 2015–2022
- 227
Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortioncorrection based on parallel gradient-descent optimization. Opt Lett, 1997, 22: 907–909
- 228
Zhou P, Liu Z, Wang X, et al. Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm. Appl Phys Lett, 2009, 94: 231106
- 229
Zhou P, Liu Z, Wang X, et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J Sel Top Quantum Electron, 2009, 15: 248–256
- 230
Shay T M. Theory of electronically phased coherent beam combination without a reference beam. Opt Express, 2006, 14: 12188–12195
- 231
Ma Y, Zhou P, Wang X, et al. Coherent beam combination with single frequency dithering technique. Opt Lett, 2010, 35: 1308–1310
- 232
Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique. Appl Opt, 2017, 56: 4255–4260
- 233
Su R T, Zhou P, Wang X L, et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination. IEEE J Sel Top Quantum Electron, 2014, 20: 206–218
- 234
Su R, Zhang Z, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control. IEEE Photon Technol Lett, 2016, 28: 2585–2588
- 235
Taylor J R, Anderson M S, Bunton P H. High-speed tilt mirror for image stabilization. Appl Opt, 1999, 38: 219–223
- 236
Wilcox C C, Andrews J R, Restaino S R, et al. Analysis of a combined tip-tilt and deformable mirror. Opt Lett, 2006, 31: 679–681
- 237
Wang X, Wang X, Zhou P, et al. 350-W coherent beam combining of fiber amplifiers with tilt-tip and phase-locking control. IEEE Photon Technol Lett, 2012, 24: 1781–1784
- 238
Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration. IEEE J Sel Top Quantum Electron, 2009, 15: 269–280
- 239
Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control. Opt Express, 2013, 21: 25045–25055
- 240
Geng C, Li X, Zhang X, et al. Coherent beam combination of an optical array using adaptive fiber optics collimators. Opt Commun, 2011, 284: 5531–5536
- 241
Zhi D, Ma P, Ma Y, et al. Novel adaptive fiber-optics collimator for coherent beam combination. Opt Express, 2014, 22: 31520–31528
- 242
Zhi D, Ma Y, Ma P, et al. Adaptive fiber optics collimator based on flexible hinges. Appl Opt, 2014, 53: 5434–5438
- 243
Beresnev L A, Weyrauch T, Vorontsov M A, et al. Development of adaptive fiber collimators for conformal fiber-based beam projection systems. In: Proceedings of SPIE, San Francisco, 2008. 709008
- 244
Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high-power fiber arrays. In: Proceedings of SPIE, San Francisco, 2006. 61020U
- 245
Fan X, Liu J, Liu J, et al. Coherent combining of a seven-element hexagonal fiber array. Opt Laser Tech, 2010, 42: 274–279
- 246
Liu Z, Xu X, Chen J, et al. Multi-beam high-duty-cycle combiner. 2009, CN200920065407
- 247
Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Opt Lett, 2008, 33: 354–356
- 248
Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining. In: Proceedings of SPIE, 2016
- 249
Christensen S E, Koski O. 2-Dimensional waveguide coherent beam combiner. In: Proceedings of Advanced Solid- State Photonics. Washington: Optical Society of America, 2007. WC1
- 250
Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. Opt Express, 2010, 18: 13547–13553
- 251
Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination. IEEE J Quantum Electron, 2010, 46: 1191–1196
- 252
Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique coherent polarization beam combining of eight fiber lasers. Laser Phys Lett, 2012, 9: 456–458
- 253
Kozlov V A, Hern´andez-Cordero J, Morse T F. All-fibercoherent beam combining of fiber lasers. Opt Lett, 1999, 24: 1814–1816
- 254
Montoya J, Hwang C, Martz D, et al. Photonic lantern kW-class fiber amplifier. Opt Express, 2017, 25: 27543–27550
- 255
Su R, Zhou P, Wang X, et al. Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers. Appl Opt, 2013, 52: 2187–2193
- 256
Yu H L, Ma P F, Wang X L, et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system. Laser Phys Lett, 2015, 12: 105301
- 257
Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses. Opt Express, 2011, 19: 25379–25387
- 258
Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers. Opt Lett, 2012, 37: 497–499
- 259
Su R, Zhou P, Ma Y, et al. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array. Appl Phys Express, 2013, 6: 122702
- 260
Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime. Opt Express, 2014, 22: 4123–4130
- 261
Zhou P, Wang X, Ma Y, et al. Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array. Opt Lett, 2010, 35: 950–952
- 262
Zhou P, Ma Y, Wang X, et al. Coherent beam combination of a hexagonal distributed high power fiber amplifier array. Appl Opt, 2009, 48: 6537–6540
- 263
Zhou P, Ma Y, Wang X, et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm. Opt Lett, 2009, 34: 2939–2941
- 264
Su R, Zhou P, Wang X, et al. Actively coherent beam combining of two single-frequency 1083 nm nanosecond fiber amplifiers in low-repetition-rate. IEEE Photon Technol Lett, 2013, 25: 1485–1487
- 265
Chen Z, Zhou P, Wang X, et al. Synchronization and coherent addition of three pulsed fiber lasers by mutual injection and phase modulation. Opt Laser Tech, 2009, 41: 710–713
- 266
Zhou P, Wang X, Chen Z, et al. Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array. Electron Lett, 2008, 44: 1238–1239
- 267
Ma P, Zhou P, Wang X, et al. Influence of perturbative phase noise on active coherent polarization beam combining system. Opt Express, 2013, 21: 29666–29678
- 268
Ma P, Wang X, Ma Y, et al. Analysis of multi-wavelength active coherent polarization beam combining system. Opt Express, 2014, 22: 16538–16551
- 269
Ma P, Lü Y, Zhou P, et al. Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system. Opt Express, 2014, 22: 27321–27338
- 270
Ma P F, Zhou P, Ma Y X, et al. Coherent polarization beam combining of four high-power fiber amplifiers using single-frequency dithering technique. IEEE Photon Technol Lett, 2012, 24: 1024–1026
- 271
Ma P, Zhou P, Xiao H, et al. Generation of a 481-W single frequency and linearly polarized beam by coherent polarization locking. IEEE Photon Technol Lett, 2013, 25: 1936–1938
- 272
Ma P, Zhou P, Wang X, et al. Coherent polarization beam combining of four 200-W-level fiber amplifiers. Appl Phys Express, 2014, 7: 022703
- 273
Liu Z, Zhou P, Ma P, et al. 5 kW level laser generation by coherent polarization beam combining of four high-power narrow-linewidth linearly-polarized fiber amplifiers (in Chinese). Chin J Laser, 2017, 44: 0415001–0415004
- 274
Bochove E J, Ray W, Durville F, et al. A linear model for passive coherent combining a large number of fiber lasers. In: Proceedings of Advances in Optical Materials. Washington: Optical Society of America, 2012. JTh2A-19
- 275
Shamir Y, Zuitlin R, Sintov Y, et al. 3kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers. In: Proceedings of Frontiers in Optics. Washington: Optical Society of America, 2012. FW6C-1
- 276
Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 25 kW fiber laser array into a 19 kW Gaussian beam. Opt Lett, 2012, 37: 2832–2834
- 277
Yu H L, Zhang Z X, Wang X L, et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method. Laser Phys Lett, 2018, 15: 075101
- 278
Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Opt Lett, 2016, 41: 3343–3346
- 279
Müller M, Klenke A, Stark H, et al. High-energy 1.8 kW 16-channel ultrafast fiber laser system. In: Proceedings of SPIE, San Francisco, 2018. 1051208
- 280
Zervas M N. Power scalability in high power fibre amplifiers. In: Proceedings of Conference on Lasers and Electro- Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017
- 281
Steinke M, Tünnermann H, Kuhn V, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors. IEEE J Sel Top Quant Electron, 2018, 24: 1–13
- 282
Johnson M C, Brunton S L, Kundtz N B, et al. Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna. J Opt Soc Am A, 2016, 33: 59–68
- 283
Fu X, Brunton S L, Nathan Kutz J. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt Express, 2014, 22: 8585–8597
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61705264, 61705265). Authors would like to acknowledge Jinyong LENG, Hu XIAO, Yanxing MA, Jiangming XU, Xiaolin WANG, Zilun CHEN, Liangjin HUANG, Wei LIU, Tianyue HOU, Baolai YANG, and Zhaokai LOU in College of Advanced Interdisciplinary Studies, National University of Defense Technology for their collaboration.
Author information
Affiliations
Corresponding authors
Additional information
Invited article
Rights and permissions
About this article
Cite this article
Liu, Z., Jin, X., Su, R. et al. Development status of high power fiber lasers and their coherent beam combination. Sci. China Inf. Sci. 62, 41301 (2019). https://doi.org/10.1007/s11432-018-9742-0
Received:
Revised:
Accepted:
Published:
Keywords
- fiber lasers and amplifiers
- nonlinear effects and mode instability
- coherent beam combining
- passive components
- 2 μm fiber lasers