Development status of high power fiber lasers and their coherent beam combination

Abstract

High-power fiber laser has been emerged great potential in a wide range of applications and becomes a robust candidate for high energy solid state laser system. To further increase the output brightness of single-channel fiber laser, high-brightness pump sources and high-power-handling passive components should be fabricated and utilized in the fiber laser systems, in addition to the advanced techniques for multiple nonlinear effects managements. The state-of-the-art high power fiber lasers are reviewed, in terms of narrow-linewidth fiber lasers, broadband fiber lasers and fiber lasers at 2 μm. Coherent beam combining is a promising technique to obtain higher output power while maintaining excellent beam quality simultaneously, which breaks through the bottlenecks of single-channel fiber laser. Based on a series of key techniques for coherent beam combining, high-power coherent beam combining of fiber lasers could be enabled with high combining efficiency. In this paper, we review the progress of high-power fiber lasers and their coherent beam combining in the recent decade, particularly the relevant work in our group. The future prospects of fiber lasers and coherent beam combining technique are also discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Snitzer E. Proposed fiber cavities for optical masers. J Appl Phys, 1961, 32: 36–39

    Article  Google Scholar 

  2. 2

    Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives. J Opt Soc Am B, 2010, 27: 63–92

    Article  Google Scholar 

  3. 3

    Dong L, Samson B. Fiber Lasers: Basics, Technology, and Applications. Boca Raton: CRC Press, 2016

    Google Scholar 

  4. 4

    Zervas M N, Codemard C A. High power fiber lasers: a review. IEEE J Sel Top Quantum Electron, 2014, 20: 219–241

    Article  Google Scholar 

  5. 5

    Liu Z, Zhou P, Xu X, et al. Coherent Beam Combining of High Average Power Fiber Lasers. Beijing: National Defense Industry Press, 2016

    Google Scholar 

  6. 6

    Stiles E. New developments in IPG fiber laser technology. In: Proceedings of the 5th International Workshop on Fiber Lasers, 2009

    Google Scholar 

  7. 7

    Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications [Invited]. Appl Opt, 2014, 53: 6554–6568

    Google Scholar 

  8. 8

    Huang L, Xu J, Ye J, et al. Power scaling of linearly polarized random fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8

    Google Scholar 

  9. 9

    Shi W, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction. J Opt Soc Am B, 2017, 34: A1

    Google Scholar 

  10. 10

    Zhou J, Wang P, Zhou P. High power fiber laser technology: introduction. Chin J Laser, 2017, 44: 201000

    Google Scholar 

  11. 11

    Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt Express, 2008, 16: 13240–13266

    Article  Google Scholar 

  12. 12

    Zhu J, Zhou P, Ma Y, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Opt Express, 2011, 19: 18645–18654

    Article  Google Scholar 

  13. 13

    Ke W W, Wang X J, Bao X F, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers. Opt Express, 2013, 21: 14272–14281

    Article  Google Scholar 

  14. 14

    Otto H J, Jauregui C, Limpert J, et al. Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality. In: Proceedings of SPIE, San Francisco, 2015. 97280E

    Google Scholar 

  15. 15

    Zervas M N. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability. In: Proceedings of SPIE, San Francisco, 2018. 1051205

    Google Scholar 

  16. 16

    Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser. In: Advanced Solid State Lasers. Washington: Optical Society of America, 2013. ATh4A.2

    Google Scholar 

  17. 17

    Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE J Sel Top Quantum Electron, 2005, 11: 567–577

    Article  Google Scholar 

  18. 18

    Brignon A. Coherent Laser Beam Combining. Weinheim: John Wiley & Sons, 2013

    Google Scholar 

  19. 19

    Liu Z J, Zhou P, Xu X J, et al. Coherent beam combining of high power fiber lasers: progress and prospect. Sci China Technol Sci, 2013, 56: 1597–1606

    Article  Google Scholar 

  20. 20

    Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling. In: Proceedings of SPIE, San Francisco, 2016. 97300Y

    Google Scholar 

  21. 21

    Ma Y, Wang X, Zhou P, et al. Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique. Opt Lasers Eng, 2011, 49: 1089–1092

    Article  Google Scholar 

  22. 22

    Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array. Opt Lett, 2012, 37: 3978–3980

    Article  Google Scholar 

  23. 23

    Liu Z, Ma P, Su R, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect. J Opt Soc Am B, 2017, 34: A7

    Google Scholar 

  24. 24

    Zhou P, Wang X, Ma Y, et al. Active and passive coherent beam combining of thulium-doped fiber lasers. In: Proceedings of SPIE, San Francisco, 2010. 784307

    Google Scholar 

  25. 25

    Ma P, Tao R, Su R, et al. 189 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality. Opt Express, 2016, 24: 4187–4195

    Article  Google Scholar 

  26. 26

    Yu H, Wang X, Zhang H, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm. J Lightwave Technol, 2016, 34: 4271–4277

    Article  Google Scholar 

  27. 27

    Jin X, Wang X, Zhou P, et al. Powerful 2 μm silica fiber sources: a review of recent progress and prospects. J Electron Sci Tech, 2015, 13: 315–327

    Google Scholar 

  28. 28

    Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt Lett, 2017, 42: 1–4

    Article  Google Scholar 

  29. 29

    Du X, Zhang H, Xiao H, et al. High-power random distributed feedback fiber laser: from science to application. Annalen Der Physik, 2016, 528: 649–662

    Article  Google Scholar 

  30. 30

    Xu J, Zhou P, Liu W, et al. Exploration in performance scaling and new application avenues of superfluorescent fiber source. IEEE J Sel Top Quantum Electron, 2018, 24: 1–10

    Google Scholar 

  31. 31

    Xiao H, Zhou P, Wang X, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photon Technol Lett, 2012, 24: 1088–1090

    Article  Google Scholar 

  32. 32

    Xiao H, Zhou P, Wang X L, et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W. Laser Phys Lett, 2013, 10: 065102

    Article  Google Scholar 

  33. 33

    Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump. Appl Opt, 2015, 54: 8166

    Article  Google Scholar 

  34. 34

    Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W. Opt Lett, 2017, 42: 1193

    Article  Google Scholar 

  35. 35

    Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression. J Opt Soc Am B, 2016, 33: 1392–1398

    Article  Google Scholar 

  36. 36

    Yang H, Zhao W, Si J, et al. 126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier. J Opt, 2016, 18: 125801

    Article  Google Scholar 

  37. 37

    Gu G, Liu Z, Kong F, et al. Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm. Opt Express, 2015, 23: 17693

    Article  Google Scholar 

  38. 38

    Seah C P, Ng T Y, Chua S. 400 W Ytterbium-doped fiber oscillator at 1018nm. In: Advanced Solid State Lasers. Washington: Optical Society of America, 2015. ATu2A.33

    Google Scholar 

  39. 39

    Chen X, Wang J, Zhao X, et al. 307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management. Chin Opt Lett, 2017, 15: 071407

    Google Scholar 

  40. 40

    Zhang H, Xiao H, Zhou P, et al. A high-power all-fiberized Yb-doped laser directly pumped by a laser diode emitting at long wavelength. Laser Phys Lett, 2013, 10: 095106

    Article  Google Scholar 

  41. 41

    Huang L, Zhang H, Wang X, et al. Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 C. IEEE Photonic J, 2016, 8: 1–7

    Google Scholar 

  42. 42

    Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers. Laser Phys Lett, 2007, 4: 93–102

    Article  Google Scholar 

  43. 43

    Zhou P, Wang X, Xiao H, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges. Laser Phys, 2012, 22: 823–831

    Article  Google Scholar 

  44. 44

    Pask H M, Carman R J, Hanna D C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region. IEEE J Sel Top Quantum Electron, 1995, 1: 2–13

    Article  Google Scholar 

  45. 45

    Zhang H W, Xiao H, Zhou P, et al. 119-W monolithic single-mode 1173-nm Raman fiber laser. IEEE Photonic J, 2013, 5: 1501706

    Google Scholar 

  46. 46

    Zhang H, Zhou P, Xiao H, et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Phys Lett, 2014, 11: 075104

    Article  Google Scholar 

  47. 47

    Du X, Zhang H, Wang X, et al. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Opt Lett, 2016, 41: 571–574

    Article  Google Scholar 

  48. 48

    Xiao H, Zhang H, Xu J, et al. 120 W monolithic Yb-doped fiber oscillator at 1150 nm. J Opt Soc Am B, 2017, 34: A63

    Google Scholar 

  49. 49

    Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Opt Express, 2015, 23: 17138–17144

    Google Scholar 

  50. 50

    Jin X, Lou Z, Chen Y, et al. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser. Sci Rep, 2017, 7: 42402

    Article  Google Scholar 

  51. 51

    Chen Y, Xiao H, Xu J, et al. Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain. Appl Opt, 2016, 55: 3824–3828

    Article  Google Scholar 

  52. 52

    Wang J, Li C, Yan D. High power composite cavity fiber laser oscillator at 1120 nm. Opt Commun, 2017, 405: 318–322

    Article  Google Scholar 

  53. 53

    Gu Y, Lei C, Liu J, et al. Side-pumping combiner for high-power fiber laser based on tandem pumping. Opt Eng, 2017, 56: 1

    Article  Google Scholar 

  54. 54

    Xiao Q, Yan P, Ren H, et al. A side-pump coupler with refractive index valley configuration for fiber lasers and amplifiers. J Lightwave Technol, 2013, 31: 2715–2722

    Article  Google Scholar 

  55. 55

    Lei C, Chen Z, Leng J, et al. The influence of fused depth on the side-pumping combiner for all-fiber lasers and amplifiers. J Lightwave Technol, 2017, 35: 1922–1928

    Article  Google Scholar 

  56. 56

    Guo W, Chen Z, Li J, et al. A system for splicing double cladding fiber and glass cone and its splicing method. China Patent, CN103217741A, 2014–09-17

    Google Scholar 

  57. 57

    Zhou X F, Chen Z L, Hou J, et al. High power fiber end-cap with 6 kW output power. High Power Laser Part Beams, 2015, 27: 27120101

    Google Scholar 

  58. 58

    Lei C, Gu Y, Chen Z, et al. Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW. Opt Express, 2018, 26: 10421–10427

    Article  Google Scholar 

  59. 59

    Zhou X, Chen Z, Wang Z, et al. Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling. Appl Opt, 2016, 55: 4001–4004

    Article  Google Scholar 

  60. 60

    Zhi D, Ma Y, Chen Z, et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality. Opt Lett, 2016, 41: 2217–2220

    Article  Google Scholar 

  61. 61

    Zhi D, Zhang Z, Ma Y, et al. Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system. Sci Rep, 2017, 7: 2199

    Article  Google Scholar 

  62. 62

    Guo W, Chen Z, Zhou H, et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers. IEEE Photonic J, 2014, 6: 1–6

    Article  Google Scholar 

  63. 63

    Zhou H, Chen Z, Zhou X, et al. All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers. Chin Opt Lett, 2015, 13: 061406–61409

    Article  Google Scholar 

  64. 64

    Li R, Xiao H, Leng J, et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application. Laser Phys Lett, 2017, 14: 125102

    Google Scholar 

  65. 65

    Gu Y, Leng J, Xiao H, et al. 5 kW all-fiber 1018 nm laser combining. High Power Laser Part Beams, 2017, 29: 29120101

    Google Scholar 

  66. 66

    Agrawal G. Nonlinear Fiber Optics. Manhattan: Academic Press, 2012

    Google Scholar 

  67. 67

    Lü H, Zhou P, Wang X, et al. Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance. Opt Express, 2015, 23: 18117–18132

    Google Scholar 

  68. 68

    Lu H, Zhou P, Wang X, et al. Theoretical and numerical study of the threshold of stimulated brillouin scattering in multimode fibers. J Lightwave Technol, 2015, 33: 4464–4470

    Article  Google Scholar 

  69. 69

    Leng J Y, Wang X L, Xiao H, et al. Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification. Laser Phys Lett, 2012, 9: 532–536

    Article  Google Scholar 

  70. 70

    Huang L, Li L, Ma P, et al. 434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal. Opt Express, 2016, 24: 26722–26731

    Google Scholar 

  71. 71

    Ma P, Zhou P, Ma Y, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality. Appl Opt, 2013, 52: 4854

    Article  Google Scholar 

  72. 72

    Huang L, Zhou Z C, Shi C, et al. Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser. Sci China Technol Sci, 2018, 61: 971–981

    Article  Google Scholar 

  73. 73

    Su R, Tao R, Wang X, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression. Laser Phys Lett, 2017, 14: 085102

    Google Scholar 

  74. 74

    Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl Opt, 1972, 11: 2489

    Article  Google Scholar 

  75. 75

    Wang Y, Xu C Q, Po H. Analysis of Raman and thermal effects in kilowatt fiber lasers. Opt Commun, 2004, 242: 487–502

    Article  Google Scholar 

  76. 76

    Jauregui C, Limpert J, Tünnermann A. Derivation of Raman treshold formulas for CW double-clad fiber amplifiers. Opt Express, 2009, 17: 8476–8490

    Article  Google Scholar 

  77. 77

    Liu W, Ma P, Lv H, et al. General analysis of SRS-limited high-power fiber lasers and design strategy. Opt Express, 2016, 24: 26715–26721

    Article  Google Scholar 

  78. 78

    Liu W, Ma P, Lv H, et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source. Opt Express, 2016, 24: 8708–8717

    Article  Google Scholar 

  79. 79

    Liu W, Ma P, Miao Y, et al. Intrinsic mechanism for spectral evolution in single-frequency raman fiber amplifier. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8

    Google Scholar 

  80. 80

    Zhang L, Jiang H, Cui S, et al. Integrated ytterbium-Raman fiber amplifier. Opt Lett, 2014, 39: 1933–1936

    Article  Google Scholar 

  81. 81

    Zhang H, Xiao H, Zhou P, et al. High power Yb-Raman combined nonlinear fiber amplifier. Opt Express, 2014, 22: 10248–10255

    Article  Google Scholar 

  82. 82

    Zhang H, Tao R, Zhou P, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm. IEEE Photon Technol Lett, 2015, 27: 628–630

    Google Scholar 

  83. 83

    Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser. Opt Express, 2016, 24: 6758–6768

    Article  Google Scholar 

  84. 84

    Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers. Opt Express, 2012, 20: 24545–24558

    Article  Google Scholar 

  85. 85

    Smith A V, Smith J J. Mode instability in high power fiber amplifiers. Opt Express, 2011, 19: 10180–10192

    Article  Google Scholar 

  86. 86

    Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt Express, 2011, 19: 13218–13224

    Article  Google Scholar 

  87. 87

    Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems. Opt Express, 2012, 20: 12912–12925

    Article  Google Scholar 

  88. 88

    Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt Express, 2012, 20: 11407–11422

    Article  Google Scholar 

  89. 89

    Hu I, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers. In: Proceedings of SPIE, San Francisco, 2013. 860109

    Google Scholar 

  90. 90

    Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers. Opt Express, 2013, 21: 1944

    Article  Google Scholar 

  91. 91

    Tao R M, Ma P F, Wang X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model. IEEE J Quantum Electron, 2015, 51: 1–6

    Google Scholar 

  92. 92

    Tao R, Ma P, Wang X, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers. Laser Phys Lett, 2015, 12: 085101

    Article  Google Scholar 

  93. 93

    Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE J Sel Top Quantum Electron, 2018, 24: 1–19

    Article  Google Scholar 

  94. 94

    Tao R, Ma P, Wang X, et al. 13 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities. Photon Res, 2015, 3: 86–93

    Google Scholar 

  95. 95

    Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength. J Opt, 2015, 17: 045504

    Article  Google Scholar 

  96. 96

    Dajani I, Flores A, Holten R, et al. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers. In: Proceedings of SPIE, San Francisco, 2016. 972801

    Google Scholar 

  97. 97

    Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Opt Lett, 2011, 36: 3118–3120

    Google Scholar 

  98. 98

    Zheng Y, Yang Y, Wang J, et al. 108 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt Express, 2016, 24: 12063–12071

    Google Scholar 

  99. 99

    Karow M, Basu C, Kracht D, et al. TEM 00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power. Opt Express, 2012, 20: 5319–5324

    Article  Google Scholar 

  100. 100

    Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power. In: Proceedings of SPIE, San Francisco, 2014. 896407

    Google Scholar 

  101. 101

    Zhou P, Huang L, Xu J M, et al. High power linearly polarized fiber laser: generation, manipulation and application. Sci China Technol Sci, 2017, 60: 1784–1800

    Google Scholar 

  102. 102

    Ruffin A B, Li M J, Chen X, et al. Brillouin gain analysis for fibers with different refractive indices. Opt Lett, 2005, 30: 3123–3125

    Article  Google Scholar 

  103. 103

    Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. In: Proceedings of SPIE, San Francisco, 2014. 89611R

    Google Scholar 

  104. 104

    Xiao H, Dong X L, Zhou P, et al. A 168-W high-power single-frequency amplifier in an all-fiber configuration. Chin Phys B, 2012, 21: 034207

    Article  Google Scholar 

  105. 105

    Wang X L, Zhou P, Xiao H, et al. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration 310 W single-frequency all-fiber laser. Laser Phys Lett, 2012, 9: 591–595

    Google Scholar 

  106. 106

    Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt Lett, 2014, 39: 666–669

    Article  Google Scholar 

  107. 107

    Jeong Y, Nilsson J, Sahu J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. Opt Lett, 2005, 30: 459–461

    Article  Google Scholar 

  108. 108

    Hildebrandt M, Frede M, Kwee P, et al. Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. Opt Express, 2006, 14: 11071–11076

    Article  Google Scholar 

  109. 109

    Gray S, Liu A, Walton D T, et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier. Opt Express, 2007, 15: 17044–17050

    Google Scholar 

  110. 110

    Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator poweramplifier sources up to 500 W. IEEE J Sel Top Quantum Electron, 2007, 13: 546–551

    Article  Google Scholar 

  111. 111

    Mermelstein M D, Yablon A D, Headley C, et al. All-fiber 194 W single-frequency single-mode Yb-doped masteroscillator power-amplifier. In: Proceedings of SPIE, San Francisco, 2008. 68730L

    Google Scholar 

  112. 112

    Dajani I, Vergien C, Robin C, et al. Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output. Opt Express, 2009, 17: 24317–24333

    Article  Google Scholar 

  113. 113

    Zeringue C, Vergien C, Dajani I. Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition. Opt Lett, 2011, 36: 618–620

    Article  Google Scholar 

  114. 114

    Zhu C, Hu I, Ma X, et al. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output. In: Advances in Optical Materials. Washington: Optical Society of America, 2011. AMC5

    Google Scholar 

  115. 115

    Theeg T, Sayinc H, Neumann J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power. IEEE Photon Technol Lett, 2012, 24: 1864–1867

    Article  Google Scholar 

  116. 116

    Zhang L, Cui S, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Opt Express, 2013, 21: 5456–5462

    Google Scholar 

  117. 117

    Theeg T, Ottenhues C, Sayinc H, et al. Core-pumped single-frequency fiber amplifier with an output power of 158 W. Opt Lett, 2016, 41: 9–12

    Article  Google Scholar 

  118. 118

    Wang X, Zhou P, Xiao H, et al. Narrow linewidth all-fiber laser with 666 W power output. High Power Laser Particle Beams, 2012, 24: 1261–1262

    Article  Google Scholar 

  119. 119

    Ran Y, Tao R, Ma P, et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality. Appl Opt, 2015, 54: 7258–7263

    Google Scholar 

  120. 120

    Beier F, Hupel C, Kuhn S, et al. Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier. Opt Express, 2017, 25: 14892–14899

    Article  Google Scholar 

  121. 121

    Li T, Zha C, Sun Y, et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noisesource phase-modulated laser. Laser Phys, 2018, 28: 105101

    Google Scholar 

  122. 122

    Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier. Opt Lett, 2016, 41: 5202–5205

    Article  Google Scholar 

  123. 123

    Platonov N, Yagodkin R, De La Cruz J, et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. In: Proceedings of SPIE, San Francisco, 2018. 105120E

    Google Scholar 

  124. 124

    Edgecumbe J, Bjrk D, Galipeau J, et al. Kilowatt-level PM amplifiers for beam combining. In: Frontiers in Optics. Washington: Optical Society of America, 2008. FTuJ2

    Google Scholar 

  125. 125

    Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 14 kW fiber amplifier. Opt Lett, 2010, 35: 1542–1544

    Article  Google Scholar 

  126. 126

    Guintrand C, Edgecumbe J, Farley K, et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier. In: Laser and Electro-Optics. Washington: Optical Society of America, 2014. JW2A.23

    Google Scholar 

  127. 127

    Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers. Opt Express, 2014, 22: 17735–17744

    Article  Google Scholar 

  128. 128

    Yagodkin R, Platonov N, Yusim A, et al. > 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth. In: Proceedings of SPIE, San Francisco, 2015. 972807

    Google Scholar 

  129. 129

    Xu Y, Fang Q, Qin Y, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser. Appl Opt, 2015, 54: 9419–9421

    Google Scholar 

  130. 130

    Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power. In: Lasers and Electro-Optics. Washington: Optical Society of America, 2015. CJ 11 4

    Google Scholar 

  131. 131

    Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultrahigh brightness pump. In: Proceedings of SPIE, San Francisco, 2015. 972806

    Google Scholar 

  132. 132

    Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers. In: Proceedings of SPIE, San Francisco, 2015. 934704

    Google Scholar 

  133. 133

    Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Opt Express, 2016, 24: 6011–6020

    Article  Google Scholar 

  134. 134

    Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition. Opt Lett, 2016, 41: 3964–3967

    Article  Google Scholar 

  135. 135

    Kanskar M, Zhang J, Kaponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications. In: Proceedings of SPIE, San Francisco, 2018. 105120F

    Google Scholar 

  136. 136

    Yu H, Zhang H, lv H, et al. 315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser. Appl Opt, 2015, 54: 4556–4560

    Google Scholar 

  137. 137

    Yu H, Wang X, Tao R, et al. 15 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator. Appl Opt, 2014, 53: 8055–8059

    Google Scholar 

  138. 138

    Yang B, Zhang H, Wang X, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW. J Opt, 2016, 18: 105803

    Article  Google Scholar 

  139. 139

    Yang B, Zhang H, Shi C, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme. Opt Express, 2016, 24: 27828–27835

    Article  Google Scholar 

  140. 140

    Yang B, Zhang H, Shi C, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability. J Opt, 2018, 20: 025802

    Google Scholar 

  141. 141

    Yang B, Zhang H, Ye Q, et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings. Chin Opt Lett, 2018, 16: 031407

    Google Scholar 

  142. 142

    Huang L, Wang W, Leng J, et al. Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier. IEEE Photon Technol Lett, 2014, 26: 33–36

    Article  Google Scholar 

  143. 143

    Xu J, Huang L, Leng J, et al. 101 kW superfluorescent source in all-fiberized MOPA configuration. Opt Express, 2015, 23: 5485–5490

    Google Scholar 

  144. 144

    Zhou P, Xiao H, Leng J, et al. High-power fiber lasers based on tandem pumping. J Opt Soc Am B, 2017, 34: A29

    Google Scholar 

  145. 145

    Zhang H, Yang B, Wang X, et al. Home-produced fiber Bragg gratings-based all-fiber oscillator with the output power exceeding 5.2 kW. Chin J Laser, 2018, 45: 0415002

    Google Scholar 

  146. 146

    Xu J M, Ye J, Zhou P, et al. Tandem pumping architecture enabled high power random fiber laser with neardiffraction- limited beam quality. Sci China Technol Sci, 2019, 62: 80–86

    Article  Google Scholar 

  147. 147

    Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing. In: Proceedings of SPIE, San Francisco, 2017. 100830Y

    Google Scholar 

  148. 148

    Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In: Proceedings of SPIE, San Francisco, 2018. 105120C

    Google Scholar 

  149. 149

    Yang B, Shi C, Zhang H, et al. Monolithic fiber laser oscillator with record high power. Laser Phys Lett, 2018, 15: 075106

    Article  Google Scholar 

  150. 150

    Xiao Y, Brunet F, Kanskar M, et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks. Opt Express, 2012, 20: 3296–3301

    Google Scholar 

  151. 151

    Yu H, Kliner D A V, Liao K, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes. In: Proceedings of SPIE, San Francisco, 2012. 82370G

    Google Scholar 

  152. 152

    Ruppik S, Becker F, Grundmann F, et al. High-power disk and fiber lasers: a performance comparison. In: Proceedings of SPIE, San Francisco, 2012. 82350V

    Google Scholar 

  153. 153

    Khitrov V, Minelly J D, Tumminelli R, et al. 3kW single-mode direct diode-pumped fiber laser. In: Proceedings of SPIE, San Francisco, 2014. 89610V

    Google Scholar 

  154. 154

    Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression. In: Proceedings of SPIE, San Francisco, 2016. 972805

    Google Scholar 

  155. 155

    Tanaka D. High power fibre lasers for industrial applications. In: Proceedings of Conference on Lasers and Electro- Optics Pacific Rim, 2017

    Google Scholar 

  156. 156

    Yao T, Ji J, Nilsson J. Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers. J Lightwave Technol, 2014, 32: 429–434

    Article  Google Scholar 

  157. 157

    Liu Z, Zhao Y. Investigation on the nonlinear problem in high power fiber laser. In: Proceedings of LASER 2016, Beijing. 2016

    Google Scholar 

  158. 158

    Lin A, Zhan H, Peng K, et al. 10 kW-level pump-gain integrated functional laser fiber. High Power Laser Part Beams, 2018, 30: 60101

    Google Scholar 

  159. 159

    Lin H H, Tang X, Li C Y, et al. 10.6 kW high-brightness cascaded-end-pumped monolithic fiber lasers directly pumped by laser diodes (in Chinese). Chin J Laser, 2018, 45: 0315001

    Google Scholar 

  160. 160

    Shiner B. The impact of fiber laser technology on the world wide material processing market. In: Proceedings of CLEO: Applications and Technology 2013. Washington: Optical Society of America, 2013. AF2J.1

    Google Scholar 

  161. 161

    Wang J, Yan D, Xiong S, et al. High power all-fiber amplifier with different seed power injection. Opt Express, 2016, 24: 14463–14469

    Article  Google Scholar 

  162. 162

    Zhan H, Liu Q, Wang Y, et al. 5 kW GTWave fiber amplifier directly pumped by commercial 976 nm laser diodes. Opt Express, 2016, 24: 27087–27095

    Google Scholar 

  163. 163

    Fang Q, Li J, Shi W, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes. IEEE Photonic J, 2017, 9: 1–7

    Google Scholar 

  164. 164

    Wang J, Yan D, Xiong S, et al. Mode instability in high power all-fiber amplifier with large-mode-area gain fiber. Opt Commun, 2017, 396: 123–126

    Article  Google Scholar 

  165. 165

    Xiao Q, Li D, Huang Y, et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser. Laser Phys, 2018, 28: 125107

    Article  Google Scholar 

  166. 166

    Jackson S D, Sabella A, Lancaster D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm. IEEE J Sel Top Quantum Electron, 2007, 13: 567–572

    Article  Google Scholar 

  167. 167

    Geng J, Wang Q, Lee Y, et al. Development of eye-safe fiber lasers near 2 μm. IEEE J Sel Top Quant Electron, 2014, 20: 150–160

    Article  Google Scholar 

  168. 168

    Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2 μm Doppler lidar for wind measurements. Opt Eng, 2007, 46: 116201

    Article  Google Scholar 

  169. 169

    Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm. Lasers Surg Med, 2005, 37: 53–58

    Article  Google Scholar 

  170. 170

    Gesierich W, Reichenberger F, Fertl A, et al. Endobronchial therapy with a thulium fiber laser (1940 nm). J Thorac Cardiov Sur, 2014, 147: 1827–1832

    Article  Google Scholar 

  171. 171

    Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 m thulium fiber laser. Opt Laser Tech, 2012, 44: 2095–2099

    Article  Google Scholar 

  172. 172

    Scholle K, Sch¨afer M, Lamrini S, et al. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications. In: Proceedings of SPIE, San Francisco, 2018. 105120O

    Google Scholar 

  173. 173

    Simakov N, Davidson A, Hemming A, et al. Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-μm source. In: Proceedings of SPIE, San Francisco, 2012. 82373K

    Google Scholar 

  174. 174

    Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt Express, 2012, 20: 7046–7053

    Article  Google Scholar 

  175. 175

    Kubat I, Petersen C R, Møller U V, et al. Thulium pumped mid-infrared 0.9-9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt Express, 2014, 22: 3959–3967

    Article  Google Scholar 

  176. 176

    Petersen C R, Møller U V, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photon, 2014, 8: 830–834

    Article  Google Scholar 

  177. 177

    Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Opt Lett, 2009, 34: 1204–1206

    Article  Google Scholar 

  178. 178

    Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling. IEEE J Sel Top Quantum Electron, 2009, 15: 85–92

    Article  Google Scholar 

  179. 179

    Ehrenreich T, Leveille R, Majid I, et al. 1-kW, all-glass Tm: fiber laser. In: Proceedings of SPIE, San Francisco, 2010. 758016

    Google Scholar 

  180. 180

    Hemming A, Simakov N, Davidson A, et al. A monolithic cladding pumped holmium-doped fibre laser. In: Proceedings of CLEO: Science and Innovations. San Jose: Optical Society of America, 2013. CW1M.1

    Google Scholar 

  181. 181

    Walbaum T, Heinzig M, Schreiber T, et al. Monolithic thulium fiber laser with 567 W output power at 1970 nm. Opt Lett, 2016, 41: 2632

    Article  Google Scholar 

  182. 182

    Newburgh G A, Zhang J, Dubinskii M. Tm-doped fiber laser resonantly diode-cladding-pumped at 1620 nm. Laser Phys Lett, 2017, 14: 125101

    Article  Google Scholar 

  183. 183

    Moulton P F. High power Tm: silica fiber lasers: current status, prospects and challenges. In: Proceedings of Lasers and Electro-Optics Europe. San Jose: Optical Society of America, 2011. TF2 3

    Google Scholar 

  184. 184

    Creeden D, Johnson B R, Rines G A, et al. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations. Opt Express, 2014, 22: 29067–29080

    Article  Google Scholar 

  185. 185

    Meleshkevich M, Platonov N, Gapontsev D, et al. 415 W single-mode CW thulium fiber laser in all-fiber format. In: Proceedings of European Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2007. CP2 3

    Google Scholar 

  186. 186

    Wang X, Zhou P, Zhang H, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers. Opt Lett, 2014, 39: 4329–4332

    Google Scholar 

  187. 187

    Wang Y, Yang J, Huang C, et al. High power tandem-pumped thulium-doped fiber laser. Opt Express, 2015, 23: 2991–2998

    Article  Google Scholar 

  188. 188

    Jin X, Lee E, Luo J, et al. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping. Opt Lett, 2018, 43: 1431–1434

    Article  Google Scholar 

  189. 189

    Sincore A, Bradford J D, Cook J, et al. High average power thulium-doped silica fiber lasers: review of systems and concepts. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8

    Article  Google Scholar 

  190. 190

    Shardlow P C, Jain D, Parker R, et al. Optimising Tm-doped silica fibres for high lasing efficiency. In: Proceedings of the European Conference on Lasers and Electro-Optics. Washington: Optical Society of America, 2015. CJ 14 3

    Google Scholar 

  191. 191

    Tumminelli R, Petit V, Carter A, et al. Highly doped and highly efficient Tm doped fiber laser. In: Proceedings of SPIE, San Francisco, 2018. 105120M

    Google Scholar 

  192. 192

    Shardlow P C, Simakov N, Billaud A, et al. Holmium doped fibre optimised for resonant cladding pumping. In: Proceedings of Lasers and Electro-Optics. Washington: Optical Society of America, 2017. CJ 11 4

    Google Scholar 

  193. 193

    Wang X, Zhou P, Wang X, et al. 102 W monolithic single frequency Tm-doped fiber MOPA. Opt Express, 2013, 21: 32386–32392

    Google Scholar 

  194. 194

    Wang X, Jin X, Wu W, et al. 310-W single frequency Tm-Doped all-fiber MOPA. IEEE Photon Technol Lett, 2015, 27: 677–680

    Google Scholar 

  195. 195

    Wang X, Jin X, Zhou P, et al. All-fiber-integrated narrowband nanosecond pulsed Tm-doped fiber MOPA. IEEE Photon Technol Lett, 2015, 27: 1473–1476

    Article  Google Scholar 

  196. 196

    Wang X, Jin X, Zhou P, et al. All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2 μm with mJ-level pulse energy. Appl Opt, 2016, 55: 1941–1945

    Article  Google Scholar 

  197. 197

    Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fibre amplified spontaneous emission sources. J Opt, 2015, 17: 045702

    Article  Google Scholar 

  198. 198

    Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fiber superfluorescent source with ultranarrow linewidth. IEEE Photonic J, 2015, 7: 1–6

    Google Scholar 

  199. 199

    Wang X, Jin X, Zhou P, et al. High power, widely tunable, narrowband superfluorescent source at 2 m based on a monolithic Tm-doped fiber amplifier. Opt Express, 2015, 23: 3382–3389

    Article  Google Scholar 

  200. 200

    Wang X, Zhou P, Miao Y, et al. Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser. J Opt Soc Am B, 2014, 31: 2476

    Article  Google Scholar 

  201. 201

    Jin X, Du X, Wang X, et al. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser. Sci Rep, 2016, 6: 30052

    Article  Google Scholar 

  202. 202

    Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm. Opt Express, 2016, 24: 975–992

    Article  Google Scholar 

  203. 203

    Tao R, Zhou P, Xiao H, et al. Theoretical study of high power mode instabilities in 2 μm thulium-doped fiber amplifiers. In: Proceedings of the 16th International Conference on Laser Optics, St. Petersburg, 2014

    Google Scholar 

  204. 204

    Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system. IEEE J Sel Top Quantum Electron, 2009, 15: 320–327

    Article  Google Scholar 

  205. 205

    Yang Y, Hu M, He B, et al. Passive coherent beam combining of four Yb-doped fiber amplifier chains with injectionlocked seed source. Opt Lett, 2013, 38: 854–856

    Article  Google Scholar 

  206. 206

    Huo Y, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier. Opt Express, 2004, 12: 6230–6239

    Article  Google Scholar 

  207. 207

    Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Appl Phys Lett, 2005, 86: 201118

    Article  Google Scholar 

  208. 208

    Wang B, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array. Opt Lett, 2009, 34: 863–865

    Article  Google Scholar 

  209. 209

    Chen Z, Hou J, Zhou P, et al. Mutual injection-locking and coherent combining of two individual fiber lasers. IEEE J Quantum Electron, 2008, 44: 515–519

    Article  Google Scholar 

  210. 210

    Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup. Opt Express, 2007, 15: 6464–6469

    Article  Google Scholar 

  211. 211

    Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl Phys Lett, 2008, 92: 021120

    Article  Google Scholar 

  212. 212

    Rothenberg J E. Passive coherent phasing of fiber laser arrays. In: Proceedings of SPIE, San Francisco, 2008. 687315

    Google Scholar 

  213. 213

    Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt Lett, 2011, 36: 2686–2688

    Article  Google Scholar 

  214. 214

    Wang X, Zhou P, Ma Y, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm. Opt Lett, 2011, 36: 3121–3123

    Article  Google Scholar 

  215. 215

    Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array. Appl Phys B, 2012, 107: 785–790

    Google Scholar 

  216. 216

    Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light. In: Proceedings of SPIE, San Francisco, 2016. 97281Y

    Google Scholar 

  217. 217

    McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam. IEEE J Sel Top Quantum Electron, 2014, 20: 174–181

    Article  Google Scholar 

  218. 218

    Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of large number of PM fibres in 2-D fibre array. Electron Lett, 2006, 42: 1024–1025

    Article  Google Scholar 

  219. 219

    Huang Z, Tang X, Luo Y, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method. Rev Sci Instrum, 2016, 87: 033109

    Article  Google Scholar 

  220. 220

    Su R, Zhou P, Wang X, et al. Phase locking of a coherent array of 32 fiber lasers. High Power Laser Part Beams, 2014, 26: 10101

    Article  Google Scholar 

  221. 221

    Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers. Opt Express, 2011, 19: 17053–17058

    Article  Google Scholar 

  222. 222

    Bellanger C, Toulon B, Primot J, et al. Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining. Opt Lett, 2010, 35: 3931–3933

    Article  Google Scholar 

  223. 223

    Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses. Opt Express, 2010, 18: 27827–27835

    Article  Google Scholar 

  224. 224

    Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser. Opt Lett, 2016, 41: 3439–3442

    Google Scholar 

  225. 225

    Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays. IEEE J Sel Top Quantum Electron, 2007, 13: 460–472

    Article  Google Scholar 

  226. 226

    Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays. Opt Express, 2008, 16: 2015–2022

    Article  Google Scholar 

  227. 227

    Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortioncorrection based on parallel gradient-descent optimization. Opt Lett, 1997, 22: 907–909

    Article  Google Scholar 

  228. 228

    Zhou P, Liu Z, Wang X, et al. Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm. Appl Phys Lett, 2009, 94: 231106

    Article  Google Scholar 

  229. 229

    Zhou P, Liu Z, Wang X, et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J Sel Top Quantum Electron, 2009, 15: 248–256

    Article  Google Scholar 

  230. 230

    Shay T M. Theory of electronically phased coherent beam combination without a reference beam. Opt Express, 2006, 14: 12188–12195

    Article  Google Scholar 

  231. 231

    Ma Y, Zhou P, Wang X, et al. Coherent beam combination with single frequency dithering technique. Opt Lett, 2010, 35: 1308–1310

    Article  Google Scholar 

  232. 232

    Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique. Appl Opt, 2017, 56: 4255–4260

    Article  Google Scholar 

  233. 233

    Su R T, Zhou P, Wang X L, et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination. IEEE J Sel Top Quantum Electron, 2014, 20: 206–218

    Article  Google Scholar 

  234. 234

    Su R, Zhang Z, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control. IEEE Photon Technol Lett, 2016, 28: 2585–2588

    Article  Google Scholar 

  235. 235

    Taylor J R, Anderson M S, Bunton P H. High-speed tilt mirror for image stabilization. Appl Opt, 1999, 38: 219–223

    Article  Google Scholar 

  236. 236

    Wilcox C C, Andrews J R, Restaino S R, et al. Analysis of a combined tip-tilt and deformable mirror. Opt Lett, 2006, 31: 679–681

    Article  Google Scholar 

  237. 237

    Wang X, Wang X, Zhou P, et al. 350-W coherent beam combining of fiber amplifiers with tilt-tip and phase-locking control. IEEE Photon Technol Lett, 2012, 24: 1781–1784

    Google Scholar 

  238. 238

    Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration. IEEE J Sel Top Quantum Electron, 2009, 15: 269–280

    Article  Google Scholar 

  239. 239

    Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control. Opt Express, 2013, 21: 25045–25055

    Article  Google Scholar 

  240. 240

    Geng C, Li X, Zhang X, et al. Coherent beam combination of an optical array using adaptive fiber optics collimators. Opt Commun, 2011, 284: 5531–5536

    Article  Google Scholar 

  241. 241

    Zhi D, Ma P, Ma Y, et al. Novel adaptive fiber-optics collimator for coherent beam combination. Opt Express, 2014, 22: 31520–31528

    Article  Google Scholar 

  242. 242

    Zhi D, Ma Y, Ma P, et al. Adaptive fiber optics collimator based on flexible hinges. Appl Opt, 2014, 53: 5434–5438

    Article  Google Scholar 

  243. 243

    Beresnev L A, Weyrauch T, Vorontsov M A, et al. Development of adaptive fiber collimators for conformal fiber-based beam projection systems. In: Proceedings of SPIE, San Francisco, 2008. 709008

    Google Scholar 

  244. 244

    Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high-power fiber arrays. In: Proceedings of SPIE, San Francisco, 2006. 61020U

    Google Scholar 

  245. 245

    Fan X, Liu J, Liu J, et al. Coherent combining of a seven-element hexagonal fiber array. Opt Laser Tech, 2010, 42: 274–279

    Article  Google Scholar 

  246. 246

    Liu Z, Xu X, Chen J, et al. Multi-beam high-duty-cycle combiner. 2009, CN200920065407

    Google Scholar 

  247. 247

    Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Opt Lett, 2008, 33: 354–356

    Google Scholar 

  248. 248

    Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining. In: Proceedings of SPIE, 2016

    Google Scholar 

  249. 249

    Christensen S E, Koski O. 2-Dimensional waveguide coherent beam combiner. In: Proceedings of Advanced Solid- State Photonics. Washington: Optical Society of America, 2007. WC1

    Google Scholar 

  250. 250

    Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. Opt Express, 2010, 18: 13547–13553

    Article  Google Scholar 

  251. 251

    Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination. IEEE J Quantum Electron, 2010, 46: 1191–1196

    Article  Google Scholar 

  252. 252

    Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique coherent polarization beam combining of eight fiber lasers. Laser Phys Lett, 2012, 9: 456–458

    Article  Google Scholar 

  253. 253

    Kozlov V A, Hern´andez-Cordero J, Morse T F. All-fibercoherent beam combining of fiber lasers. Opt Lett, 1999, 24: 1814–1816

    Article  Google Scholar 

  254. 254

    Montoya J, Hwang C, Martz D, et al. Photonic lantern kW-class fiber amplifier. Opt Express, 2017, 25: 27543–27550

    Article  Google Scholar 

  255. 255

    Su R, Zhou P, Wang X, et al. Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers. Appl Opt, 2013, 52: 2187–2193

    Article  Google Scholar 

  256. 256

    Yu H L, Ma P F, Wang X L, et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system. Laser Phys Lett, 2015, 12: 105301

    Article  Google Scholar 

  257. 257

    Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses. Opt Express, 2011, 19: 25379–25387

    Article  Google Scholar 

  258. 258

    Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers. Opt Lett, 2012, 37: 497–499

    Article  Google Scholar 

  259. 259

    Su R, Zhou P, Ma Y, et al. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array. Appl Phys Express, 2013, 6: 122702

    Google Scholar 

  260. 260

    Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime. Opt Express, 2014, 22: 4123–4130

    Article  Google Scholar 

  261. 261

    Zhou P, Wang X, Ma Y, et al. Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array. Opt Lett, 2010, 35: 950–952

    Article  Google Scholar 

  262. 262

    Zhou P, Ma Y, Wang X, et al. Coherent beam combination of a hexagonal distributed high power fiber amplifier array. Appl Opt, 2009, 48: 6537–6540

    Article  Google Scholar 

  263. 263

    Zhou P, Ma Y, Wang X, et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm. Opt Lett, 2009, 34: 2939–2941

    Article  Google Scholar 

  264. 264

    Su R, Zhou P, Wang X, et al. Actively coherent beam combining of two single-frequency 1083 nm nanosecond fiber amplifiers in low-repetition-rate. IEEE Photon Technol Lett, 2013, 25: 1485–1487

    Article  Google Scholar 

  265. 265

    Chen Z, Zhou P, Wang X, et al. Synchronization and coherent addition of three pulsed fiber lasers by mutual injection and phase modulation. Opt Laser Tech, 2009, 41: 710–713

    Article  Google Scholar 

  266. 266

    Zhou P, Wang X, Chen Z, et al. Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array. Electron Lett, 2008, 44: 1238–1239

    Article  Google Scholar 

  267. 267

    Ma P, Zhou P, Wang X, et al. Influence of perturbative phase noise on active coherent polarization beam combining system. Opt Express, 2013, 21: 29666–29678

    Article  Google Scholar 

  268. 268

    Ma P, Wang X, Ma Y, et al. Analysis of multi-wavelength active coherent polarization beam combining system. Opt Express, 2014, 22: 16538–16551

    Article  Google Scholar 

  269. 269

    Ma P, Lü Y, Zhou P, et al. Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system. Opt Express, 2014, 22: 27321–27338

    Article  Google Scholar 

  270. 270

    Ma P F, Zhou P, Ma Y X, et al. Coherent polarization beam combining of four high-power fiber amplifiers using single-frequency dithering technique. IEEE Photon Technol Lett, 2012, 24: 1024–1026

    Article  Google Scholar 

  271. 271

    Ma P, Zhou P, Xiao H, et al. Generation of a 481-W single frequency and linearly polarized beam by coherent polarization locking. IEEE Photon Technol Lett, 2013, 25: 1936–1938

    Article  Google Scholar 

  272. 272

    Ma P, Zhou P, Wang X, et al. Coherent polarization beam combining of four 200-W-level fiber amplifiers. Appl Phys Express, 2014, 7: 022703

    Article  Google Scholar 

  273. 273

    Liu Z, Zhou P, Ma P, et al. 5 kW level laser generation by coherent polarization beam combining of four high-power narrow-linewidth linearly-polarized fiber amplifiers (in Chinese). Chin J Laser, 2017, 44: 0415001–0415004

    Google Scholar 

  274. 274

    Bochove E J, Ray W, Durville F, et al. A linear model for passive coherent combining a large number of fiber lasers. In: Proceedings of Advances in Optical Materials. Washington: Optical Society of America, 2012. JTh2A-19

    Google Scholar 

  275. 275

    Shamir Y, Zuitlin R, Sintov Y, et al. 3kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers. In: Proceedings of Frontiers in Optics. Washington: Optical Society of America, 2012. FW6C-1

    Google Scholar 

  276. 276

    Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 25 kW fiber laser array into a 19 kW Gaussian beam. Opt Lett, 2012, 37: 2832–2834

    Article  Google Scholar 

  277. 277

    Yu H L, Zhang Z X, Wang X L, et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method. Laser Phys Lett, 2018, 15: 075101

    Article  Google Scholar 

  278. 278

    Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Opt Lett, 2016, 41: 3343–3346

    Google Scholar 

  279. 279

    Müller M, Klenke A, Stark H, et al. High-energy 1.8 kW 16-channel ultrafast fiber laser system. In: Proceedings of SPIE, San Francisco, 2018. 1051208

    Google Scholar 

  280. 280

    Zervas M N. Power scalability in high power fibre amplifiers. In: Proceedings of Conference on Lasers and Electro- Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017

    Google Scholar 

  281. 281

    Steinke M, Tünnermann H, Kuhn V, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors. IEEE J Sel Top Quant Electron, 2018, 24: 1–13

    Article  Google Scholar 

  282. 282

    Johnson M C, Brunton S L, Kundtz N B, et al. Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna. J Opt Soc Am A, 2016, 33: 59–68

    Article  Google Scholar 

  283. 283

    Fu X, Brunton S L, Nathan Kutz J. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt Express, 2014, 22: 8585–8597

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61705264, 61705265). Authors would like to acknowledge Jinyong LENG, Hu XIAO, Yanxing MA, Jiangming XU, Xiaolin WANG, Zilun CHEN, Liangjin HUANG, Wei LIU, Tianyue HOU, Baolai YANG, and Zhaokai LOU in College of Advanced Interdisciplinary Studies, National University of Defense Technology for their collaboration.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zejin Liu or Pengfei Ma or Pu Zhou.

Additional information

Invited article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jin, X., Su, R. et al. Development status of high power fiber lasers and their coherent beam combination. Sci. China Inf. Sci. 62, 41301 (2019). https://doi.org/10.1007/s11432-018-9742-0

Download citation

Keywords

  • fiber lasers and amplifiers
  • nonlinear effects and mode instability
  • coherent beam combining
  • passive components
  • 2 μm fiber lasers