Three matrix conditions for the reduction of finite automata based on the theory of semi-tensor product of matrices

This is a preview of subscription content, access via your institution.


  1. 1

    Almeida J, Zeitoun M. Description and analysis of a bottom-up DFA minimization algorithm. Inf Process Lett, 2008, 107: 52–59

    MathSciNet  Article  Google Scholar 

  2. 2

    David J. The average complexity of Moore’s state minimization algorithm is O(nloglogn). Lect Notes Comput Sci, 2010, 6281: 318–329

    Article  Google Scholar 

  3. 3

    Peeva K. Equivalence, reduction and minimization of finite automata over semirings. Theory Comput Sci, 1991, 88: 269–285

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Lamperti G, Scandale M. Incremental determinization and minimization of finite acyclic automata. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 2013. 2250–2257

    Google Scholar 

  5. 5

    Holzer M, Kutrib M. Descriptional and computational complexity of finite automata: a survey. Inf Comput, 2011, 209: 456–470

    MathSciNet  Article  Google Scholar 

  6. 6

    Carrasco R C, Forcada M L. Incremental construction and maintenance of minimal finite-state automata. Comput Linguist, 2002, 28: 207–216

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Zhang ZP, Chen Z Q, Liu Z X. Modeling and reachability of probabilistic finite automata based on semitensor product of matrices. Sci China Inf Sci, 2018, 61: 129202

    MathSciNet  Article  Google Scholar 

  8. 8

    Yue J M, Chen Z Q, Yan Y Y, et al. Solvability of k-track assignment problem: a graph approach. Control Theory Appl, 2017, 34: 457–466

    Google Scholar 

  9. 9

    Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-Tensor Product of Matrices and Its Applications. Singapore: World Scientific Publishing, 2012

    Google Scholar 

  10. 10

    Aho A V, Sethi R, Ullman J D. Compilers, Principles, Techniques, and Tools. Boston: Addison-Wesley Publishing Corporation, 1986

    Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. U1804150, 61573199) and 2018 Henan Province Science and Technique Foundation (Grant No. 182102210045).

Author information



Corresponding author

Correspondence to Yongyi Yan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, J., Yan, Y. & Chen, Z. Three matrix conditions for the reduction of finite automata based on the theory of semi-tensor product of matrices. Sci. China Inf. Sci. 63, 129203 (2020).

Download citation