Solving multi-scenario cardinality constrained optimization problems via multi-objective evolutionary algorithms


Cardinality constrained optimization problems (CCOPs) are fixed-size subset selection problems with applications in several fields. CCOPs comprising multiple scenarios, such as cardinality values that form an interval, can be defined as multi-scenario CCOPs (MSCCOPs). An MSCCOP is expected to optimize the objective value of each cardinality to support decision-making processes. When the computation is conducted using traditional optimization algorithms, an MSCCOP often requires several passes (algorithmic runs) to obtain all the (near-)optima, where each pass handles a specific cardinality. Such separate passes abandon most of the knowledge (including the potential superior solution structures) learned in one pass that can also be used to improve the results of other passes. By considering this situation, we propose a generic transformation strategy that can be referred to as the Mucard strategy, which converts an MSCCOP into a low-dimensional multi-objective optimization problem (MOP) to simultaneously obtain all the (near-)optima of the MSCCOP in a single algorithmic run. In essence, the Mucard strategy combines separate passes that deal with distinct variable spaces into a single pass, enabling knowledge reuse and knowledge interchange of each cardinality among genetic individuals. The performance of the Mucard strategy was demonstrated using two typical MSCCOPs. For a given number of evolved individuals, the Mucard strategy improved the accuracy of the obtained solutions because of the in-process knowledge than that obtained by untransformed evolutionary algorithms, while reducing the average runtime. Furthermore, the equivalence between the optimal solutions of the transformed MOP and the untransformed MSCCOP can be theoretically proved.

This is a preview of subscription content, access via your institution.


  1. 1

    Stephan R. Cardinality constrained combinatorial optimization: complexity and polyhedra. Discrete Optim, 2010, 7: 99–113

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Karp R M. Reducibility among combinatorial problems. In: Proceedings of Complexity of Computer Computations, 1972. 85–103

  3. 3

    Banfield R E, Hall L O, Bowyer K W, et al. Ensemble diversity measures and their application to thinning. Inf Fusion, 2005, 6: 49–62

    Article  Google Scholar 

  4. 4

    Moghaddam B, Weiss Y, Avidan S. Spectral bounds for sparse pca: exact and greedy algorithms. In: Proceedings of Advances in Neural Information Processing Systems, 2005. 915–922

  5. 5

    Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev, 2009, 51: 34–81

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Zhou X, Huaimin W, Bo D. How many robots are enough: a multi-objective genetic algorithm for the single-objective time-limited complete coverage problem. In: Proceedings of IEEE International Conference on Robotics and Automation, 2018. 2380–2387

  7. 7

    Chai R, Li H P, Meng F Y, et al. Energy consumption optimization-based joint route selection and flow allocation algorithm for software-defined networking. Sci China Inf Sci, 2017, 60: 040306

    Article  Google Scholar 

  8. 8

    Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 2002, 6: 182–197

    Article  Google Scholar 

  9. 9

    Wang R, Purshouse R C, Fleming P J. Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput, 2013, 17: 474–494

    Article  Google Scholar 

  10. 10

    Wang R, Zhou Z B, Ishibuchi H, et al. Localized weighted sum method for many-objective optimization. IEEE Trans Evol Comput, 2018, 22: 3–18

    Article  Google Scholar 

  11. 11

    Wang Y, Li H X, Yen G G, et al. MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans Cybern, 2015, 45: 830–843

    Article  Google Scholar 

  12. 12

    Gupta A, Ong Y S, Feng L. Multifactorial evolution: toward evolutionary multitasking. IEEE Trans Evol Comput, 2016, 20: 343–357

    Article  Google Scholar 

  13. 13

    Gupta A, Ong Y S, Feng L, et al. Multiobjective multifactorial optimization in evolutionary multitasking. IEEE Trans Cybern, 2017, 47: 1652–1665

    Article  Google Scholar 

  14. 14

    Knowles J D, Watson R A, Corne D W. Reducing local optima in single-objective problems by multi-objectivization. In: Proceedings of International Conference on Evolutionary Multi-Criterion Optimization, 2001. 269–283

  15. 15

    Song W, Wang Y, Li H X, et al. Locating multiple optimal solutions of nonlinear equation systems based on multiob-jective optimization. IEEE Trans Evol Comput, 2015, 19: 414–431

    Article  Google Scholar 

  16. 16

    Bienstock D. Computational study of a family of mixed-integer quadratic programming problems. Math Program, 1996, 74: 121–140

    MathSciNet  MATH  Google Scholar 

  17. 17

    Burdakov O, Kanzow C, Schwartz A. On a reformulation of mathematical programs with cardinality constraints. In: Proceedings of Advances in Global Optimization, 2015. 3–14

  18. 18

    Sun X L, Zheng X J, Li D. Recent advances in mathematical programming with semi-continuous variables and cardinality constraint. J Oper Res Soc China, 2013, 1: 55–77

    Article  MATH  Google Scholar 

  19. 19

    Rifki O, Ono H. A survey of computational approaches to portfolio optimization by genetic algorithms. In: Proceedings of the 18th International Conference Computing in Economics and Finance, 2012

  20. 20

    Ruiz-Torrubiano R, García-Moratilla S, Suárez A. Optimization problems with cardinality constraints. In: Proceedings of Computational Intelligence in Optimization, 2010. 105–130

  21. 21

    Chang T J, Meade N, Beasley J E, et al. Heuristics for cardinality constrained portfolio optimisation. Comput Oper Res, 2000, 27: 1271–1302

    Article  MATH  Google Scholar 

  22. 22

    Volgenant A. Solving the k-cardinality assignment problem by transformation. Eur J Oper Res, 2004, 157: 322–331

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Radcliffe N J, George F A. A study in set recombination. In: Proceedings of the 5th International Conference on Genetic Algorithms, 1993. 23–30

  24. 24

    Kariv O, Hakimi S L. An algorithmic approach to network location problems. SIAM J Appl Math, 1979, 37: 539–560

    MathSciNet  Article  MATH  Google Scholar 

  25. 25

    Reese J. Solution methods for the p-median problem: an annotated bibliography. Networks, 2006, 48: 125–142

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Mladenović N, Brimberg J, Hansen P, et al. The p-median problem: a survey of metaheuristic approaches. Eur J Oper Res, 2007, 179: 927–939

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    ReVelle C S, Eiselt H A, Daskin M S. A bibliography for some fundamental problem categories in discrete location science. Eur J Oper Res, 2008, 184: 817–848

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Hosage C M, Goodchild M F. Discrete space location-allocation solutions from genetic algorithms. Ann Oper Res, 1986, 6: 35–46

    Article  Google Scholar 

  29. 29

    Alp O, Erkut E, Drezner Z. An efficient genetic algorithm for the p-median problem. Ann Oper Res, 2003, 122: 21–42

    MathSciNet  Article  MATH  Google Scholar 

  30. 30

    Li X, Xiao N C, Claramunt C, et al. Initialization strategies to enhancing the performance of genetic algorithms for the p-median problem. Comput Ind Eng, 2011, 61: 1024–1034

    Article  Google Scholar 

  31. 31

    Lim A, Xu Z. A fixed-length subset genetic algorithm for the p-median problem. In: Proceedings of Genetic and Evolutionary Computation Conference, 2003. 1596–1597

  32. 32

    Correa E S, Steiner M T A, Freitas A A, et al. A genetic algorithm for solving a capacitated p-median problem. Numer Algorithm, 2004, 35: 373–388

    MathSciNet  Article  MATH  Google Scholar 

  33. 33

    Alba E, Domínguez E. Comparative analysis of modern optimization tools for the p-median problem. Stat Comput, 2006, 16: 251–260

    MathSciNet  Article  Google Scholar 

  34. 34

    Hansen P, Mladenoviíc N. Complement to a comparative analysis of heuristics for the p-median problem. Stat Comput, 2008, 18: 41–46

    MathSciNet  Article  Google Scholar 

  35. 35

    Daskin M S, Maass K L. The p-median problem. In: Location Science. Berlin: Springer, 2015. 21–45

    Google Scholar 

  36. 36

    Daskin M S. Network and Discrete Location: Models, Algorithms, and Applications. Hoboken: John Wiley & Sons, 2013

    Google Scholar 

  37. 37

    Galvão R D, ReVelle C. A Lagrangean heuristic for the maximal covering location problem. Eur J Oper Res, 1996, 88: 114–123

    Article  MATH  Google Scholar 

  38. 38

    Körkel M. On the exact solution of large-scale simple plant location problems. Eur J Oper Res, 1989, 39: 157–173

    MathSciNet  Article  MATH  Google Scholar 

  39. 39

    Cesarone F, Scozzari A, Tardella F. Efficient algorithms for mean-variance portfolio optimization with hard real-world constraints. In: Proceedings of the 18th AFIR Colloquium: Financial Risk in a Changing World, 2008

  40. 40

    Ponsich A, Jaimes A L, Coello C A C. A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans Evol Comput, 2013, 17: 321–344

    Article  Google Scholar 

  41. 41

    Metaxiotis K, Liagkouras K. Multiobjective evolutionary algorithms for portfolio management: a comprehensive literature review. Expert Syst Appl, 2012, 39: 11685–11698

    Article  Google Scholar 

  42. 42

    Markowitz H. Portfolio selection. J Financ, 1952, 7: 77–91

    Google Scholar 

  43. 43

    Fieldsend J E, Matatko J, Peng M. Cardinality constrained portfolio optimisation. In: Proceedings of International Conference on Intelligent Data Engineering and Automated Learning, 2004. 788–793

  44. 44

    Anagnostopoulos K P, Mamanis G. A portfolio optimization model with three objectives and discrete variables. Comput Oper Res, 2010, 37: 1285–1297

    MathSciNet  Article  MATH  Google Scholar 

  45. 45

    Ruiz-Torrubiano R, Suarez A. Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints. IEEE Comput Intell Mag, 2010, 5: 92–107

    Article  Google Scholar 

  46. 46

    Cesarone F, Scozzari A, Tardella F. A new method for mean-variance portfolio optimization with cardinality constraints. Ann Oper Res, 2013, 205: 213–234

    MathSciNet  Article  MATH  Google Scholar 

  47. 47

    Zitzler E, Thiele L, Laumanns M, et al. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput, 2003, 7: 117–132

    Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61751208, 61502510, 61773390), Outstanding Natural Science Foundation of Hunan Province (Grant No. 2017JJ1001), and Special Program for the Applied Basic Research of National University of Defense Technology (Grant No. ZDYYJCYJ20140601).

Author information



Corresponding author

Correspondence to Rui Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, H., Peng, W. et al. Solving multi-scenario cardinality constrained optimization problems via multi-objective evolutionary algorithms. Sci. China Inf. Sci. 62, 192104 (2019).

Download citation


  • evolutionary computation
  • multi-objective optimization
  • cardinality-constrained optimization problem
  • multiple scenarios
  • transformation
  • p-median problem
  • portfolio optimization problem