DGEPN-GCEN2V: a new framework for mining GGI and its application in biomarker detection

This is a preview of subscription content, access via your institution.

References

  1. 1

    Xuan Q, Fang B W, Liu Y, et al. Automatic pearl classification machine based on a multistream convolutional neural network. IEEE Trans Ind Electron, 2018, 65: 6538–6547

    Article  Google Scholar 

  2. 2

    Qu W, Wang D L, Feng S, et al. A novel cross-modal hashing algorithm based on multimodal deep learning. Sci China Inf Sci, 2017, 60: 092104

    Article  Google Scholar 

  3. 3

    Danaee P, Ghaeini R, Hendrix D A. A deep learning approach for cancer detection and relevant gene identification. In: Proceedings of Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, Hawaii, 2017, 219–229

    Google Scholar 

  4. 4

    Chen J Y, Wu Y Y, Lin X, et al. DOE-AND-SCA: a novel SCA based on DNN with optimal eigenvectors and automatic cluster number determination. IEEE Access, 2018, 6: 20764–20778

    Article  Google Scholar 

  5. 5

    Chira C, Sedano J, Villar J R, et al. Gene clustering for time-series microarray with production outputs. Soft Comput, 2016, 20: 4301–4312

    Article  Google Scholar 

  6. 6

    Singh V, Baranwal N, Sevakula R K, et al. Layerwise feature selection in stacked sparse auto-encoder for tumor type prediction. In: Proceedings of Bioinformatics and Biomedicine, Shenzhen, 2016. 1542–1548

    Google Scholar 

  7. 7

    Liang M X, Li Z Z, Chen T, et al. Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. IEEE/ACM Trans Comput Biol Bioinf, 2015, 12: 928–937

    Article  Google Scholar 

  8. 8

    Xie R, Quitadamo A, Cheng J L, et al. A predictive model of gene expression using a deep learning framework. In: Proceedings of Bioinformatics and Biomedicine, Shenzhen, 2016, 676–681

    Google Scholar 

  9. 9

    Chen Y F, Li Y, Narayan R, et al. Gene expression inference with deep learning. Bioinformatics, 2016, 32: 1832–1839

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Zhejiang Natural Science Foundation (Grant No. LY19F020025), National Natural Science Foundation of China (Grant Nos. 61502423, 61572439), Zhejiang University Open Fund (Grant No. 2018KFJJ07), Zhejiang Science and Technology Plan Project (Grant Nos. LGF18F030009, 2017C33149), and Zhejiang Outstanding Youth Fund (Grant No. LR19F030001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qi Xuan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zheng, H., Xiong, H. et al. DGEPN-GCEN2V: a new framework for mining GGI and its application in biomarker detection. Sci. China Inf. Sci. 62, 199104 (2019). https://doi.org/10.1007/s11432-018-9704-7

Download citation