Control design in the presence of actuator saturation: from individual systems to multi-agent systems

This is a preview of subscription content, access via your institution.

References

  1. 1

    Sussmann H J, Sontag E D, Yang Y. A general result on the stabilization of linear systems using bounded controls. IEEE Trans Autom Control, 1994, 39: 2411–2425

    MathSciNet  Article  Google Scholar 

  2. 2

    Fuller A T. In-the-large stability of relay and saturating control systems with linear controllers. Int J Control, 1969, 10: 457–480

    MathSciNet  Article  Google Scholar 

  3. 3

    Sussmann H J, Yang Y. On the stabilizability of multiple integrators by means of bounded feedback controls. In: Proceedings of the 30th IEEE Conference on Decision and Control, 1991. 70–72

    Google Scholar 

  4. 4

    Yang Y. Global stabilization of linear systems with bounded feedback. Dissertation for Ph.D. Degree. New Brunswick: Rutgers, The State University of New Jersey, 1993

    Google Scholar 

  5. 5

    Teel A R. Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst Control Lett, 1992, 18: 165–171

    MathSciNet  Article  Google Scholar 

  6. 6

    Lin Z L. Low Gain Feedback. Berlin: Springer, 1999

    Google Scholar 

  7. 7

    Lin Z L. Global control of linear systems with saturating actuators. Automatica, 1998, 34: 897–905

    MathSciNet  Article  Google Scholar 

  8. 8

    Lin Z L, Pachter M, Banda S. Toward improvement of tracking performance nonlinear feedback for linear systems. Int J Control, 1998, 70: 1–11

    MathSciNet  Article  Google Scholar 

  9. 9

    Hu T S, Lin Z L. Control Systems with Actuator Saturation: Analysis and Design. Boston: Birkhäuser, 2001

    Book  Google Scholar 

  10. 10

    Li Y L, Lin Z L. Stability and Performance of Control Systems with Actuator Saturation. Boston: Birkhäuser, 2018

    Book  Google Scholar 

  11. 11

    Abdessameud A, Tayebi A. On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst Control Lett, 2010, 59: 812–821

    MathSciNet  Article  Google Scholar 

  12. 12

    Fu J J, Wang J Z. Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Syst Control Lett, 2016, 93: 1–12

    MathSciNet  Article  Google Scholar 

  13. 13

    Fu J, Wen G, Yu W, et al. Finite-time consensus for second-order multi-agent systems with input saturation. IEEE Trans Circ Syst II Express Briefs, 2018, 65: 1758–1762

    Article  Google Scholar 

  14. 14

    Wei W, Xiang J, Li Y. Consensus problems for linear time-invariant multi-agent systems with saturation constraints. IET Control Theory Appl, 2011, 5: 823–829

    MathSciNet  Article  Google Scholar 

  15. 15

    Meng Z Y, Zhao Z Y, Lin Z L. On global leaderfollowing consensus of identical linear dynamic systems subject to actuator saturation. Syst Control Lett, 2013, 62: 132–142

    Article  Google Scholar 

  16. 16

    Ren W. On consensus algorithms for double-integrator dynamics. IEEE Trans Autom Control, 2008, 53: 1503–1509

    MathSciNet  Article  Google Scholar 

  17. 17

    Xie Y J, Lin Z L. Global optimal consensus for multiagent systems with bounded controls. Syst Control Lett, 2017, 102: 104–111

    Article  Google Scholar 

  18. 18

    Zhao Z Y, Lin Z L. Global leader-following consensus of a group of general linear systems using bounded controls. Automatica, 2016, 68: 294–304

    MathSciNet  Article  Google Scholar 

  19. 19

    Zhao Z Y, Lin Z L. Discrete-time global leaderfollowing consensus of a group of general linear systems using bounded controls. Inter J Robust Nonlinear Control, 2017, 27: 3433–3465

    MATH  Google Scholar 

  20. 20

    Chu H J, Yi B W, Zhang G Q, et al. Performance improvement of consensus tracking for linear multiagent systems with input saturation: a gain scheduled approach. IEEE Trans Syst Man Cybern Syst, 2017. doi: 10.1109/TSMC.2017.2698210

    Google Scholar 

  21. 21

    Chu H, Zhang W. Adaptive consensus tracking for linear multi-agent systems with input saturation. Trans Inst Meas Control, 2016, 38: 1434–1441

    Article  Google Scholar 

  22. 22

    Fan M C, Zhang H T, Lin Z L. Distributed semiglobal consensus with relative output feedback and input saturation under directed switching networks. IEEE Trans Circ Syst II, 2015, 62: 796–800

    Google Scholar 

  23. 23

    Wang X L, Wang X F. Semi-global consensus of multiagent systems with intermittent communications and low-gain feedback. IET Control Theory Appl, 2015, 9: 766–774

    MathSciNet  Article  Google Scholar 

  24. 24

    Shi L R, Li Y L, Lin Z L. Semi-global leader-following output consensus of heterogeneous multi-agent systems with input saturation. Int J Robust Nonlinear Control, 2018, 28: 4916–4930

    MathSciNet  Article  Google Scholar 

  25. 25

    Shi L R, Zhao Z Y, Lin Z L. Robust semi-global leaderfollowing practical consensus of a group of linear systems with imperfect actuators. Sci China Inf Sci, 2017, 60: 072201

    MathSciNet  Article  Google Scholar 

  26. 26

    Shi L R, Zhao Z Y, Lin Z L. Robust semi-global containment control of identical linear systems with imperfect actuators. In: Proceedings of the 56th IEEE Conference on Decision and Control, 2017. 4058–4063

    Google Scholar 

  27. 27

    Su H S, Chen M Z Q, Lam J, et al. Semi-global leaderfollowing consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Trans Circ Syst I, 2013, 60: 1881–1889

    Google Scholar 

  28. 28

    Su H S, Chen M Z Q, Chen G R. Robust semiglobal coordinated tracking of linear multi-agent systems with input saturation. Int J Robust Nonlinear Control, 2015, 25: 2375–2390

    Article  Google Scholar 

  29. 29

    Wang Q L, Yu C B, Gao H J. Semiglobal synchronization of multiple generic linear agents with input saturation. Int J Robust Nonlinear Control, 2014, 24: 3239–3254

    MathSciNet  Article  Google Scholar 

  30. 30

    Wei A R, Hu X M, Wang Y Z. Consensus of linear multi-agent systems subject to actuator saturation. Int J Control Autom Syst, 2013, 11: 649–656

    Article  Google Scholar 

  31. 31

    Yang T, Stoorvogel A A, Grip H F, et al. Semi-global regulation of output synchronization for heterogeneous networks of non-introspective, invertible agents subject to actuator saturation. Int J Robust Nonlinear Control, 2014, 24: 548–566

    MathSciNet  Article  Google Scholar 

  32. 32

    Zhao Z Y, Hong Y G, Lin Z L. Semi-global output consensus of a group of linear systems in the presence of external disturbances and actuator saturation: an output regulation approach. Int J Robust Nonlinear Control, 2016, 26: 1353–1375

    MathSciNet  Article  Google Scholar 

  33. 33

    Zhao Z Y, Lin Z L. Semi-global leader-following consensus of multiple linear systems with position and rate limited actuators. Int J Robust Nonlinear Control, 2015, 25: 2083–2100

    MathSciNet  Article  Google Scholar 

  34. 34

    Li Y L, Lin Z L. Regional leader-following consensus of multi-agent systems with saturating actuators. In: Proceedings of the 36th Chinese Control Conference, 2017. 8401–8406

    Google Scholar 

  35. 35

    Li Y L, Lin Z L. On the estimation of the domain of consensus for discrete-time multi-agent systems subject to actuator saturation. In: Proceedings of the 13th IEEE International Conference on Control and Automation, 2017. 203–208

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by US Army Research Office (Grant No. W911NF-17-1-0535).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zongli Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Z. Control design in the presence of actuator saturation: from individual systems to multi-agent systems. Sci. China Inf. Sci. 62, 26201 (2019). https://doi.org/10.1007/s11432-018-9698-x

Download citation