Anchor-based manifold binary pattern for finger vein recognition

Abstract

This paper proposes a novel learning method of binary local features for recognition of the finger vein. The learning methods existing in local features for image recognition intend to maximize the data variance, reduce quantitative errors, exploit the contextual information within each binary code, or utilize the label information, which all ignore the local manifold structure of the original data. The manifold structure actually plays a very important role in binary code learning, but constructing a similarity matrix for large-scale datasets involves a lot of computational and storage cost. The study attempts to learn a map, which can preserve the manifold structure between the original data and the learned binary codes for large-scale situations. To achieve this goal, we present a learning method using an anchor-based manifold binary pattern (AMBP) for finger vein recognition. Specifically, we first extract the pixel difference vectors (PDVs) in the local patches by calculating the differences between each pixel and its neighbors. Second, we construct an asymmetric graph, on which each data point can be a linear combination of its K-nearest neighbor anchors, and the anchors are randomly selected from the training samples. Third, a feature map is learned to project these PDVs into low-dimensional binary codes in an unsupervised manner, where (i) the quantization loss between the original real-valued vectors and learned binary codes is minimized and (ii) the manifold structure of the training data is maintained in the binary space. Additionally, the study fuses the discriminative binary descriptor and AMBP methods at the image representation level to further boost the performance of the recognition system. Finally, experiments using the MLA and PolyU databases show the effectiveness of our proposed methods.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Jain A K, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Trans Circ Syst Vid, 2004, 14: 4–20

    Article  Google Scholar 

  2. 2

    Yang J F, Shi Y H. Finger-vein ROI localization and vein ridge enhancement. Pattern Recogn Lett, 2012, 33: 1569–1579

    Article  Google Scholar 

  3. 3

    Yang J F, Zhang B, Shi Y H. Scattering removal for finger-vein image restoration. Sensors, 2012, 12: 3627–3640

    Article  Google Scholar 

  4. 4

    Lee E C, Park K R. Image restoration of skin scattering and optical blurring for finger vein recognition. Optics Lasers Eng, 2011, 49: 816–828

    Article  Google Scholar 

  5. 5

    Shin K, Park Y, Nguyen D, et al. Finger-vein image enhancement using a fuzzy-based fusion method with Gabor and retinex filtering. Sensors, 2014, 14: 3095–3129

    Article  Google Scholar 

  6. 6

    Lu Y, Xie S J, Yoon S, et al. Finger vein identication using polydirectional local line binary pattern. In: Proceedings of International Conference on ICT Convergence, 2013. 61–65

    Google Scholar 

  7. 7

    Yang G P, Xi X M, Yin Y L. Finger vein recognition based on a personalized best bit map. Sensors, 2012, 12: 1738–1757

    Article  Google Scholar 

  8. 8

    Rosdi B A, Shing C W, Suandi S A. Finger vein recognition using local line binary pattern. Sensors, 2011, 11: 11357–11371

    Article  Google Scholar 

  9. 9

    Xi X M, Yang G P, Yin Y L, et al. Finger vein recognition based on the hyperinformation feature. Opt Eng, 2014, 53: 013108

    Article  Google Scholar 

  10. 10

    Meng X J, Xi X M, Yang G P, et al. Finger vein recognition based on deformation information. Sci China Inf Sci, 2018, 61: 052103

    Article  Google Scholar 

  11. 11

    Lee E C, Jung H, Kim D. New finger biometric method using near infrared imaging. Sensors, 2011, 11: 2319–2333

    Article  Google Scholar 

  12. 12

    Yang L, Yang G P, Yin Y L, et al. Finger vein recognition with anatomy structure analysis. IEEE Trans Circ Syst Video Technol, 2018, 28: 1892–1905

    Article  Google Scholar 

  13. 13

    Deng W L, Hu J N, Guo J. Compressive binary patterns: designing a robust binary face descriptor with random-field eigenfilters. IEEE Trans Pattern Anal Mach Intell, 2019, 41: 758–767

    Article  Google Scholar 

  14. 14

    Lu J W, Liong V E, Zhou X Z, et al. Learning compact binary face descriptor for face recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37: 2041–2056

    Article  Google Scholar 

  15. 15

    Lu J W, Liong V E, Zhou J. Simultaneous local binary feature learning and encoding for homogeneous and heterogeneous face recognition. IEEE Trans Pattern Anal Mach Intell, 2018, 40: 1979–1993

    Article  Google Scholar 

  16. 16

    Duan Y Q, Lu J W, Feng J J, et al. Context-aware local binary feature learning for face recognition. IEEE Trans Pattern Anal Mach Intell, 2018, 40: 1139–1153

    Article  Google Scholar 

  17. 17

    Liu H Y, Yang L, Yang G P, et al. Discriminative binary descriptor for finger vein recognition. IEEE Access, 2018, 6: 5795–5804

    Article  Google Scholar 

  18. 18

    Weiss Y, Torralba A, Fergus R. Spectral hashing. In: Proceedings of Advances in Neural Information Processing Systems, 2008. 1753–1760

    Google Scholar 

  19. 19

    Liu W, Wang J, Sanjiv K, et al. Hashing with graphs. In: Proceedings of the 28th International Conference on Machine Learning (ICML), 2011

    Google Scholar 

  20. 20

    Ji R R, Liu H, Cao L J, et al. Toward optimal manifold hashing via discrete locally linear embedding. IEEE Trans Image Process, 2017, 26: 5411–5420

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Irie G, Li Z G, Wu X M, et al. Locally linear hashing for extracting non-linear manifolds. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014. 2123–2130

    Google Scholar 

  22. 22

    Liu F, Yin Y L, Yang G P, et al. Finger vein recognition with superpixel-based features. In: Proceedings of IEEE International Joint Conference on Biometrics, 2014

    Google Scholar 

  23. 23

    Zhou L Z, Yang G P, Yin Y L, et al. Finger vein recognition based on stable and discriminative superpixels. Int J Patt Recogn Artif Intell, 2016, 30: 1650015

    Article  Google Scholar 

  24. 24

    Dong L M, Yang G P, Yin Y L, et al. Finger vein verification based on a personalized best patches map. In: Proceedings of International Joint Conference Biometrics (IJCB), 2014

    Google Scholar 

  25. 25

    Yu C B, Qin H F, Cui Y Z, et al. Finger-vein image recognition combining modified Hausdorff distance with minutiae feature matching. Interdiscip Sci Comput Life Sci, 2009, 1: 280–289

    Article  Google Scholar 

  26. 26

    Lee E C, Lee H C, Park K R. Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction. Int J Imag Syst Technol, 2009, 19: 179–186

    Article  Google Scholar 

  27. 27

    Kumar A, Zhou Y B. Human identification using finger images. IEEE Trans Image Process, 2012, 21: 2228–2244

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Song W, Kim T, Kim H C, et al. A finger-vein verification system using mean curvature. Pattern Recogn Lett, 2011, 32: 1541–1547

    Article  Google Scholar 

  29. 29

    Miura N, Nagasaka A, Miyatake T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Machine Vision Appl, 2004, 15: 194–203

    Article  Google Scholar 

  30. 30

    Lee H C, Kang B J, Lee E C, et al. Finger vein recognition using weighted local binary pattern code based on a support vector machine. J Zhejiang Univ Sci C, 2010, 11: 514–524

    Article  Google Scholar 

  31. 31

    Wu J D, Liu C T. Finger-vein pattern identification using principal component analysis and the neural network technique. Expert Syst Appl, 2011, 38: 5423–5427

    Article  Google Scholar 

  32. 32

    Yang G P, Xi X M, Yin Y L. Finger vein recognition based on (2D)2 PCA and metric learning. J Biomed Biotech, 2012, 2012: 1–9

    Google Scholar 

  33. 33

    Guan F X, Wang K J, Liu J Y, et al. Bi-direction weighted (2D)2 PCA with eigenvalue normalization one for finger vein recognition. Pattern Recogn Art Intell, 2011, 24: 417–424

    Google Scholar 

  34. 34

    Li Y Y, Lu R Q. Locality preserving projection on SPD matrix Lie group: algorithm and analysis. Sci China Inf Sci, 2018, 61: 092104

    MathSciNet  Article  Google Scholar 

  35. 35

    Roweis S T. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290: 2323–2326

    Article  Google Scholar 

  36. 36

    Luxburg U V. A tutorial on spectral clustering. Stat Comput, 2007, 17: 395–416

    MathSciNet  Article  Google Scholar 

  37. 37

    Elhamifar E, Vidal R. Sparse subspace clustering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. 2790–2797

    Google Scholar 

  38. 38

    Goh A, Vidal R. Segmenting motions of different types by unsupervised manifold clustering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007

    Google Scholar 

  39. 39

    Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Trans Inf Theory, 2009, 55: 5302–5316

    MathSciNet  Article  MATH  Google Scholar 

  40. 40

    Liu G C, Lin Z C, Yu Y. Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning (ICML), 2010. 663–670

    Google Scholar 

  41. 41

    Liu W, Mu C, Kumar S, et al. Discrete graph hashing. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014. 3419–3427

    Google Scholar 

  42. 42

    Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell, 2008, 31: 210–227

    Article  Google Scholar 

  43. 43

    Cai D, Chen X L. Large scale spectral clustering via landmark-based sparse representation. IEEE Trans Cybern, 2015, 45: 1669–1680

    Article  Google Scholar 

  44. 44

    Nie F P, Zhu W, Li X L. Unsupervised large graph embedding. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017. 2422–2428

    Google Scholar 

  45. 45

    Wen Z W, Yin W T. A feasible method for optimization with orthogonality constraints. Math Program, 2013, 142: 397–434

    MathSciNet  Article  MATH  Google Scholar 

  46. 46

    Zhou Z H. Ensemble Methods: Foundations and Algorithms. Boca Raton: Chapman and Hall/CRC, 2012

    Google Scholar 

  47. 47

    Yin Y L, Liu L L, Sun X W. Sdumla-hmt: a multimodal biometric database. In: Proceedings of Chinese Conference on Biometric Recognition, 2011. 260–268

    Google Scholar 

  48. 48

    Yang L, Yang G P, Yin Y L, et al. Sliding window-based region of interest extraction for finger vein images. Sensors, 2013, 13: 3799–3815

    Article  Google Scholar 

  49. 49

    Meng X J, Yang G P, Yin Y L, et al. Finger vein recognition based on local directional code. Sensors, 2012, 12: 14937–14952

    Article  Google Scholar 

  50. 50

    Xi X M, Yang L, Yin Y L. Learning discriminative binary codes for finger vein recognition. Pattern Recogn, 2017, 66: 26–33

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61472226, 61573219, 61703235), and Key Research and Development Project of Shandong Province (Grant No. 2018GGX101032). The authors would particularly like to thank the anonymous reviewers for their helpful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gongping Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, G., Yang, L. et al. Anchor-based manifold binary pattern for finger vein recognition. Sci. China Inf. Sci. 62, 52104 (2019). https://doi.org/10.1007/s11432-018-9651-8

Download citation

Keywords

  • finger vein recognition
  • feature learning
  • local linear embedding
  • fusion
  • manifold learning
  • anchor