Lattice reduction aided belief propagation for massive MIMO detection


Efficient massive MIMO detection for practical deployment, which is with spatially correlated channel and high-order modulation, is a challenging topic for the fifth generation mobile communication (5G). In this paper, lattice reduction aided belief propagation (LRA-BP) is proposed for massive MIMO detection. LRA-BP applies the message updating rules of Markov random field based belief propagation (MRF-BP) in lattice reduced MIMO system. With the lattice reduced, well-conditioned MIMO channel, LRA-BP obtains better message updating and detection performance in spatially correlated channel than MRF-BP. Log-domain arithmetic is used in LRA-BP for computational complexity reduction. Simulation result shows that LRA-BP outperforms MRF-BP with 3–10 dB in terms of required SNR for 1% packet error rate in spatially correlated channel for 256-QAM. We also show that LRA-BP requires much lower complexity compared with MRF-BP.

This is a preview of subscription content, access via your institution.


  1. 1

    Andrews J G, Buzzi S, Choi W, et al. What will 5G be? IEEE J Sel Areas Commun, 2014, 32: 1065–1082

    Article  Google Scholar 

  2. 2

    Boccardi F, Heath R W, Lozano A, et al. Five disruptive technology directions for 5G. IEEE Commun Mag, 2014, 52: 74–80

    Article  Google Scholar 

  3. 3

    Ji H, Kim Y, Lee J, et al. Overview of full-dimension mimo in lte-advanced pro. IEEE Commun Mag, 2017, 55: 176–184

    Article  Google Scholar 

  4. 4

    Yang S, Hanzo L. Fifty years of MIMO detection: the road to large-scale MIMOs. IEEE Commun Surv Tut, 2015, 17: 1941–1988

    Article  Google Scholar 

  5. 5

    Tang C, Tao Y, Chen Y, et al. Approximate iteration detection and precoding in massive MIMO. China Commun, 2018, 15: 183–196

    Article  Google Scholar 

  6. 6

    Chen Y, Gao X Q, Xia X G, et al. Robust MMSE precoding for massive MIMO transmission with hardware mismatch. Sci China Inf Sci, 2018, 61: 042303

    MathSciNet  Article  Google Scholar 

  7. 7

    Hu J, Duman T M. Graph-based detector for blast architecture. In: Proceedings of IEEE International Conference on Communications, Glasgow, 2007. 1018–1023

    Google Scholar 

  8. 8

    Yang J, Zhang C, Liang X, et al. Improved symbol-based belief propagation detection for large-scale mimo. In: Proceedings of IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, 2015. 1–6

    Google Scholar 

  9. 9

    Long F, Lv T, Cao R, et al. Single edge based belief propagation algorithms for mimo detection. In: Proceedings of the 34th IEEE Sarnoff Symposium, Princeton, 2011. 1–5

    Google Scholar 

  10. 10

    Bickson D, Dolev D. Linear detection via belief propagation. In: Proceedings of the 45th Annual Allerton Conference on Communication, Control, and Computing, Allerton, 2007. 7

    Google Scholar 

  11. 11

    Yoon S, Chae C B. Low-complexity MIMO detection based on belief propagation over pairwise graphs. IEEE Trans Veh Technol, 2014, 63: 2363–2377

    Article  Google Scholar 

  12. 12

    Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kaufmann Publishers Inc., 1988

    Google Scholar 

  13. 13

    Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Trans Inform Theor, 2001, 47: 498–519

    MathSciNet  Article  Google Scholar 

  14. 14

    Montanari A, Prabhakar B, Tse D. Belief propagation based multiuser detection. In: Proceedings of the 43th Allerton Conference on Communications, Control and Computing, Monticello, 2005. 86

    Google Scholar 

  15. 15

    Takahashi T, Ibi S, Sampei S. Design of adaptively scaled belief in large mimo detection for high-order modulation. In: Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, 2017. 1800–1505

    Google Scholar 

  16. 16

    Som P, Datta T, Chockalingam A, et al. Improved large-mimo detection based on damped belief propagation. In: Proceedings of IEEE Information Theory Workshop on Information Theory, Cairo, 2010. 1–5

    Google Scholar 

  17. 17

    Bickson D, Dolev D, Shental O, et al. Gaussian belief propagation based multiuser detection. In: Proceedings of IEEE International Symposium on Information Theory, Toronto, 2008. 1878–1882

    Google Scholar 

  18. 18

    3rd Generation Partnership Project (3GPP). Study on 3d channel model for LTE. TR-36.873. DynaReport/36873.htm

  19. 19

    Xu W L. Capacity improvement analysis of 3D-beamforming in small cell systems. Sci China Inf Sci, 2018, 61: 022305

    Article  Google Scholar 

  20. 20

    Wubben D, Seethaler D, Jalden J, et al. Lattice reduction. IEEE Signal Process Mag, 2011, 28: 70–91

    Article  Google Scholar 

  21. 21

    Wubben D, Bohnke R, Kuhn V, et al. Mmse-based lattice-reduction for near-ml detection of mimo systems. In: Proceedings of ITG Workshop on Smart Antennas, Munich, 2004. 106–113

    Google Scholar 

  22. 22

    Shabany M, Gulak P G. The application of lattice-reduction to the k-best algorithm for near-optimal mimo detection. In: Proceedings of IEEE International Symposium on Circuits and Systems, Seattle, 2008. 316–319

    Google Scholar 

  23. 23

    Peng G, Liu L, Zhou S, et al. Algorithm and architecture of a low-complexity and high-parallelism preprocessing-based k-best detector for large-scale MIMO systems. IEEE Trans Signal Process, 2018, 66: 1860–1875

    MathSciNet  Article  Google Scholar 

  24. 24

    Liu T H. Comparisons of two real-valued MIMO signal models and their associated ZF-SIC detectors over the Rayleigh fading channel. IEEE Trans Wirel Commun, 2013, 12: 6054–6066

    Article  Google Scholar 

  25. 25

    3rd Generation Partnership Project (3GPP). Physical channels and modulation. TS-36.211. DynaReport/36211.htm

  26. 26

    Lenstra A K, Lenstra H W, Lovász L. Factoring polynomials with rational coefficients. Math Ann, 1982, 261: 515–534

    MathSciNet  Article  Google Scholar 

  27. 27

    Jensen J. Statistics for Petroleum Engineers and Geoscientists. Amsterdam: Elsevier, 2000. 207

    Google Scholar 

  28. 28

    Windpassinger C. Detection and precoding for multiple input multiple output channels. Dissertation for Ph.D. Degree. Nurnberg: University Erlangen, 2004. 33–36

    Google Scholar 

  29. 29

    Rasmussen C E, Williams C. Gaussian Processes for Machine Learning. Cambridge: The MIT Press, 2006

    Google Scholar 

  30. 30

    Robertson P, Hoeher P, Villebrun E. Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding. Eur Trans Telecomm, 1997, 8: 119–125

    Article  Google Scholar 

  31. 31

    3rd Generation Partnership Project (3GPP). Multiplexing and channel coding. TS-36.212. DynaReport/36212.htm

  32. 32

    Rusek F, Persson D, Lau B K, et al. Scaling up mimo: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60

    Article  Google Scholar 

  33. 33

    Studer C, Seethaler D, Bolcskei H. Finite lattice-size effects in mimo detection. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2008. 2032–2037

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Senjie Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., He, Z., Niu, K. et al. Lattice reduction aided belief propagation for massive MIMO detection. Sci. China Inf. Sci. 62, 42302 (2019).

Download citation


  • massive MIMO
  • MIMO detection
  • belief propagation
  • graph-based detection
  • lattice reduction
  • Markov random field