Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bayesian random Fourier filters for Gaussian noises

  • 41 Accesses

This is a preview of subscription content, log in to check access.


  1. 1

    Kivinen J, Smola A J, Williamson R C. Online learning with kernels. IEEE Trans Signal Process, 2004, 52: 2165–2176

  2. 2

    Ma W T, Duan J D, Man W S, et al. Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction. Eng Appl Artif Intel, 2017, 58: 101–110

  3. 3

    Deng C W, Huang G B, Xu J, et al. Extreme learning machines: new trends and applications. Sci China Inf Sci, 2015, 58: 020301

  4. 4

    Rasmussen C E, Williams C K I. Gaussian Processes for Machine Learning. Cambridge: MIT Press, 2006

  5. 5

    Bouboulis P, Pougkakiotis S, Theodoridis S. Efficient KLMS and KRLS algorithms: a random Fourier feature perspective. In: Proceedings of IEEE Workshop on Statistical Signal Processing, Palma de Mallorca, 2016. 1–5

  6. 6

    Särkkä S. Bayesian Filtering and Smoothing. Cambridge: Cambridge University Press, 2013

  7. 7

    Zeng N Y, Wang Z D, Zhang H. Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter. Sci China Inf Sci, 2016, 59: 112204

  8. 8

    Zhang Y G, Huang Y L. Gaussian approximate filter for stochastic dynamic systems with randomly delayed measurements and colored measurement noises. Sci China Inf Sci, 2016, 59: 092207

  9. 9

    Zhao C, Guo L. PID controller design for second order nonlinear uncertain systems. Sci China Inf Sci, 2017, 60: 022201

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61671389, 61672436).

Author information

Correspondence to Shiyuan Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, W., Duan, S. et al. Bayesian random Fourier filters for Gaussian noises. Sci. China Inf. Sci. 61, 129206 (2018). https://doi.org/10.1007/s11432-018-9634-7

Download citation