Decentralized control for linear systems with multiple input channels

Abstract

In this paper, we consider the decentralized optimal control problem for linear discrete-time systems with multiple input channels. First, under centralized control, the optimal feedback gains are given in terms of two algebraic Riccati equations. A reduced order observer is then designed using only the local input and output information. By selecting an appropriate initial value for the observer, we derive an observer-based decentralized optimal controller where the feedback gain is the same as that obtained in the centralized optimal control problem. Last but not least, we study the optimal control problem of non-homogeneous multi-agent systems as an application. A suboptimal decentralized controller is obtained and the difference between the suboptimal cost and the optimal one is given.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Bellman R. Large systems. IEEE Trans Autom Control, 1974, 19: 464–465

    Article  Google Scholar 

  2. 2

    Lavaei J, Aghdam A G. Overlapping control design for multi-channel systems. Automatica, 2009, 45: 1326–1331

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Lamperski A, Lessard L. Optimal decentralized state-feedback control with sparsity and delays. Automatica, 2015, 58: 143–151

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Lessard L. A separation principle for decentralized state-feedback optimal control. In: Proceedings of the 51st Annual Allerton Conference, Illinois, 2013. 528–534

    Google Scholar 

  5. 5

    Nishio Y, Murata Y, Yamaya Y, et al. Optimal calibration scheme for map-based control of diesel engines. Sci China Inf Sci, 2018, 61: 070205

    Article  Google Scholar 

  6. 6

    Mukaidani H, Xu H, Dragan V. Decentralized H2 control for multi-channel stochastic systems. IEEE Trans Autom Control, 2015, 60: 1080–1086

    Article  MATH  Google Scholar 

  7. 7

    Li T, Zhang J F. Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans Autom Control, 2008, 53: 1643–1660

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Pindyck R. Optimal economic stabilization policies under decentralized control and conflicting objectives. IEEE Trans Autom Control, 1977, 22: 517–530

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Bakule L. Decentralized control: an overview. Annu Rev Control, 2008, 32: 87–98

    Article  Google Scholar 

  10. 10

    Sandell N, Varaiya P, Athans M, et al. Survey of decentralized control methods for large scale systems. IEEE Trans Autom Control, 1978, 23: 108–128

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Wang S H, Davison E. On the stabilization of decentralized control systems. IEEE Trans Autom Control, 1973, 18: 473–478

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Wang Z J, Li H J, Xu Z. Real-world traffic analysis and joint caching and scheduling for in-RAN caching networks. Sci China Inf Sci, 2017, 60: 062302

    Article  Google Scholar 

  13. 13

    Xu D B, Ugrinovskii V. Decentralized measurement feedback stabilization of large-scale systems via control vector Lyapunov functions. Syst Control Lett, 2013, 62: 1187–1195

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    You K Y, Xie L H. Coordination of discrete-time multi-agent systems via relative output feedback. Int J Robust Nonlinear Control, 2011, 21: 1587–1605

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Zhai G, Ikeda M, Fujisaki Y. Decentralized H8 controller design: a matrix inequality approach using a homotopy method. Automatica, 2001, 37: 565–572

    Article  MATH  Google Scholar 

  16. 16

    Ha Q P, Trinh H. Observer-based control of multi-agent systems under decentralized information structure. Int J Syst Sci, 2004, 35: 719–728

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Elmahdi A, Taha A F, Sun D. Observer-based decentralized control scheme for stability analysis of networked systems. In: Proceedings of the 11th IEEE International Conference on Control and Automation, Taiwan, 2014. 857–862

    Google Scholar 

  18. 18

    Shu S L, Lin F. Decentralized control of networked discrete event systems with communication delays. Automatica, 2015, 50: 2108–2112

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Zhang F F, Wang W, Zhang H S. The design of distributed suboptimal controller for multi-agent systems. Int J Robust Nonlinear Control, 2015, 25: 2829–2842

    MathSciNet  Article  MATH  Google Scholar 

  20. 20

    Cao Y C, Ren W. Optimal linear-consensus algorithms: an LQR perspective. IEEE Trans Syst Man Cybern B, 2010, 40: 819–830

    Article  Google Scholar 

  21. 21

    Rotkowitz M, Lall S. A characterization of convex problems in decentralized control. IEEE Trans Autom Control, 2006, 51: 274–286

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61403235, 61573221, 61633014, 61873332) and Qilu Youth Scholar Discipline Construction Funding from Shandong University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juanjuan Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xu, L., Xie, L. et al. Decentralized control for linear systems with multiple input channels. Sci. China Inf. Sci. 62, 52202 (2019). https://doi.org/10.1007/s11432-018-9617-0

Download citation

Keywords

  • decentralized control
  • reduced order observer
  • multiple channels
  • algebraic Riccati equation