A glove-based system for object recognition via visual-tactile fusion

This is a preview of subscription content, access via your institution.


  1. 1

    Lacey S, Campbell C, Sathian K. Vision and touch: multiple or multisensory representations of objects? Perception, 2007, 36: 1513–1521

    Article  Google Scholar 

  2. 2

    Chitta S, Sturm J, Piccoli M, et al. Tactile sensing for mobile manipulation. IEEE Trans Robot, 2011, 27: 558–568

    Article  Google Scholar 

  3. 3

    Schmitz A, Bansho Y, Noda K, et al. Tactile object recognition using deep learning and dropout. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2014. 1044–1050

    Google Scholar 

  4. 4

    Liu H P, Guo D, Sun F C. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas, 2016, 65: 656–665

    Article  Google Scholar 

  5. 5

    Woods A T, Newell F N. Visual, haptic and crossmodal recognition of objects and scenes. J Physiol–Paris, 2004, 98: 147–159

    Google Scholar 

  6. 6

    Gao Y, Hendricks L A, Kuchenbecker K J. Deep learning for tactile understanding from visual and haptic data. 2015. ArXiv:1511.06065

    Google Scholar 

  7. 7

    Güler P, Bekiroglu Y, Gratal X. What’s in the container? Classifying object contents from vision and touch. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014. 3961–3968

    Google Scholar 

  8. 8

    Liu H P, Wu Y P, Sun F C, et al. Weakly paired multimodal fusion for object recognition. IEEE Trans Autom Sci Eng, 2018, 15: 784–795

    Article  Google Scholar 

  9. 9

    Zhang W C, Sun F C, Wu H, et al. A framework for the fusion of visual and tactile modalities for improving robot perception. Sci China Inf Sci, 2017, 60: 012201

    Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61503212, 61703284, U1613212), in part by National Science Foundation of China and the German Research Foundation in Project Cross Modal Learning, NSFC 61621136008/DFG TRR-169.

Author information



Corresponding author

Correspondence to Bin Fang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, B., Sun, F., Liu, H. et al. A glove-based system for object recognition via visual-tactile fusion. Sci. China Inf. Sci. 62, 50203 (2019). https://doi.org/10.1007/s11432-018-9606-6

Download citation