Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

AI for 5G: research directions and paradigms

  • 1293 Accesses

  • 12 Citations

Abstract

Wireless communication technologies such as fifth generation mobile networks (5G) will not only provide an increase of 1000 times in Internet traffic in the next decade but will also offer the underlying technologies to entire industries to support Internet of things (IOT) technologies. Compared to existing mobile communication techniques, 5G has more varied applications and its corresponding system design is more complicated. The resurgence of artificial intelligence (AI) techniques offers an alternative option that is possibly superior to traditional ideas and performance. Typical and potential research directions related to the promising contributions that can be achieved through AI must be identified, evaluated, and investigated. To this end, this study provides an overview that first combs through several promising research directions in AI for 5G technologies based on an understanding of the key technologies in 5G. In addition, the study focuses on providing design paradigms including 5G network optimization, optimal resource allocation, 5G physical layer unified acceleration, end-to-end physical layer joint optimization, and so on.

References

  1. 1

    You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques (in Chinese). Sci Sin Inform, 2014, 44: 551–563

  2. 2

    Li L M, Wang D M, Niu X K, et al. mmWave communications for 5G: implementation challenges and advances. Sci China Inf Sci, 2018, 61: 021301

  3. 3

    Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301

  4. 4

    Zhang J H, Tang P, Tian L, et al. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inf Sci, 2017, 60: 080301

  5. 5

    Tao X F, Han Y, Xu X D, et al. Recent advances and future challenges for mobile network virtualization. Sci China Inf Sci, 2017, 60: 040301

  6. 6

    3GPP. Way forward on the overall 5G-NR eMBB. Workplan RP-170741. 2017. ftp://ftp.3gpp.org/TSG RAN/TSG RAN/TSGR 75/Docs/RP-170741.zip

  7. 7

    3GPP. Study on new radio access technology: radio access architecture and interfaces (release 14). TR38.801, v14.0. 2017. https://doi.org/www.3gpp.org/ftp/Specs/archive/38series/38.801/38801-e00.zip

  8. 8

    ITU-R. Minimum requirements related to technical performance for IMT2020 radio interface(s). Report ITU-RM.2410-0. 2017. https://doi.org/www.itu.int/pub/R-REP-M.2410-2017

  9. 9

    3GPP. LTE Enhancements and 5G Normative Work. Release-15. 2018. https://doi.org/www.3gpp.org/release-15

  10. 10

    You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35–43

  11. 11

    Yang W J, Wang M, Zhang J J, et al. Narrowband wireless access for low-power massive internet of things: a bandwidth perspective. IEEE Wirel Commun, 2017, 24: 138–145

  12. 12

    ITU-T. LS/o on the results of the 1st meeting of the ITU-T focus group on machine learning for future networks including 5G (FG ML5G). FG ML5G-0-004. 2018. https://doi.org/www.3gpp.org/ftp/tsgsa/WG1Serv/TSGS182Dubrovnik/Docs/S1-181271.zip

  13. 13

    3GPP. 5G system network data analytics services stage 3. TS 29.520 (CT3). 2018. https://doi.org/www.etsi.org/deliver/etsits/129500129599/129520/15.00.0060/ts129520v150000p.pdf

  14. 14

    Whitley D. A genetic algorithm tutorial. Stat Comput, 1994, 4: 65–85

  15. 15

    Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw, 2015, 61: 85–117

  16. 16

    You X H, Chen G A, Cheng S X. Dynamic learning rate optimization of the backpropagation algorithm. IEEE Trans Neural Netw, 1995, 6: 669–677

  17. 17

    You X H. Can backpropagation error surface not have local minima. IEEE Trans Neural Netw, 1992, 3: 1019–1021

  18. 18

    Yu X H, Chen G A. Efficient backpropagation learning using optimal learning rate and momentum. Neural Netw, 1997, 10: 517–527

  19. 19

    Kaelbling L P, Littman M L, Moore A W. Reinforcement learning: a survey. J Artif Intell Res, 1996, 4: 237–285

  20. 20

    Watkins C J C H, Dayan P. Q-learning. Mach Learn, 1992, 8: 279–292

  21. 21

    Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. 2017. ArXiv: 1703.03400

  22. 22

    Wu J X, Gao B B, Wei X S, et al. Resource-constrained deep learning: challenges and practices. Sci Sin Inform, 2018, 48: 501–510

  23. 23

    Zhou Z H. Machine learning: recent progress in China and beyond. China Sci Rev, 2018, 5: 20

  24. 24

    Zhong Y X. Artificial intelligence: concept, approach and opportunity. Chin Sci Bull, 2017, 62: 2473

  25. 25

    Gatherer A. Machine learning modems: how ML will change how we specify and design next generation communication systems. IEEE ComSoc Tech News, 2018. https://doi.org/www.comsoc.org/ctn/machine-learning-modems-how-ml-willchange-how-we-specify-and-design-next-generation

  26. 26

    Yang C, Xu W H, Zhang Z C, et al. A channel-blind detection for SCMA based on image processing techniques. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2018. 1–5

  27. 27

    Zhang C, XuW H. Neural networks: efficient implementations and applications. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 1029–1032

  28. 28

    Xu W H, You X H, Zhang C. Efficient deep convolutional neural networks accelerator without multiplication and retraining. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018. 1–5

  29. 29

    Xu W H, Wang Z F, You X H, et al. Efficient fast convolution architectures for convolutional neural network. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 904–907

  30. 30

    Xu W H, Wu Z Z, Ueng Y L, et al. Improved polar decoder based on deep learning. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2017. 1–6

  31. 31

    Xu W H, Zhong Z W, Be’ery Y, et al. Joint neural network equalizer and decoder. In: Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS), 2018. 1–6

  32. 32

    Xu W H, Be’ery Y, You X H, et al. Polar decoding on sparse graphs with deep learning. In: Proceedings of Asilomar Conference on Signals, Systems, and Computers (Asilomar), 2018. 1–6

  33. 33

    Xu W H, You X H, Zhang C. Using Fermat number transform to accelerate convolutional neural network. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 1033–1036

  34. 34

    Gao X Q, Jiang B, Li X, et al. Statistical eigenmode transmission over jointly correlated MIMO channels. IEEE Trans Inform Theor, 2009, 55: 3735–3750

  35. 35

    Wang D M, Zhang Y, Wei H, et al. An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications. Sci China Inf Sci, 2016, 59: 081301

  36. 36

    Gesbert D, Hanly S, Huang H, et al. Multi-cell MIMO cooperative networks: a new look at interference. IEEE J Sel Areas Commun, 2010, 28: 1380–1408

  37. 37

    Jing S S, Yu A L, Liang X, et al. Uniform belief propagation processor for massive MIMO detection and GF (2n) LDPC decoding. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 961–964

  38. 38

    Gandhi V S, Maheswaran B. A cross layer design for performance enhancements in LTE-A system. In: Proceedings of IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016. 905–909

  39. 39

    Kuen J, Kong X F, Wang G, et al. DelugeNets: deep networks with efficient and flexible cross-layer information inflows. In: Proceedings of IEEE International Conference on Computer Vision Workshop (ICCVW), 2017. 958–966

  40. 40

    Farsad N, Rao M, Goldsmith A. Deep learning for joint source-channel coding of text. 2018. ArXiv: 1802.06832

  41. 41

    Xu X W, Ding Y K, Hu S X, et al. Scaling for edge inference of deep neural networks. Nat Electron, 2018, 1: 216–222

  42. 42

    Wang X F, Li X H, Leung V C M. Artificial intelligence-based techniques for emerging heterogeneous network: state of the arts, opportunities, and challenges. IEEE Access, 2015, 3: 1379–1391

  43. 43

    Klaine P V, Imran M A, Onireti O, et al. A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Commun Surv Tut, 2017, 19: 2392–2431

  44. 44

    Pèrez-Romero J, Sallent O, Ferrús R, et al. Knowledge-based 5G radio access network planning and optimization. In: Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS), 2016. 359–365

  45. 45

    Gómez-Andrades A, Munoz P, Serrano I, et al. Automatic root cause analysis for LTE networks based on unsupervised techniques. IEEE Trans Veh Technol, 2016, 65: 2369–2386

  46. 46

    Wang J H, Guan W, Huang Y M, et al. Distributed optimization of hierarchical small cell networks: a GNEP framework. IEEE J Sel Areas Commun, 2017, 35: 249–264

  47. 47

    Bogale T E, Wang X, Le L B. Machine intelligence techniques for next-generation context-aware wireless networks. 2018. ArXiv: 1801.04223

  48. 48

    Li R, Zhao Z, Zhou X, et al. Intelligent 5G: when cellular networks meet artificial intelligence. IEEE Wirel Commun, 2017, 24: 175–183

  49. 49

    Zhao Z, Li R, Sun Q, et al. Deep reinforcement learning for network slicing. 2018. ArXiv: 1805.06591

  50. 50

    Ren Y R, Zhang C, Liu X, et al. Efficient early termination schemes for belief-propagation decoding of polar codes. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2015. 1–4

  51. 51

    Fossorier M P C, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Trans Commun, 1999, 47: 673–680

  52. 52

    Yang J M, Song W Q, Zhang S Q, et al. Low-complexity belief propagation detection for correlated large-scale MIMO systems. J Sign Process Syst, 2018, 90: 585–599

  53. 53

    Liu L, Yuen C, Guan Y L, et al. Gaussian message passing iterative detection for MIMO-NOMA systems with massive access. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), 2016. 1–6

  54. 54

    Yang J M, Zhang C, Zhou H Y, et al. Pipelined belief propagation polar decoders. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2016. 413–416

  55. 55

    Tan X S, Xu W H, Be’ery Y, et al. Improving massive MIMO belief propagation detector with deep neural network. 2018. ArXiv: 1804.01002

  56. 56

    Liang F, Shen C, Wu F. An iterative BP-CNN architecture for channel decoding. IEEE J Sel Top Signal Process, 2018, 12: 144–159

  57. 57

    Lv X Z, Wei P, Xiao X C. Automatic identification of digital modulation signals using high order cumulants. Electronic Warfare, 2004, 6: 1

  58. 58

    Wang T Q, Wen C K, Wang H Q, et al. Deep learning for wireless physical layer: opportunities and challenges. China Commun, 2017, 14: 92–111

  59. 59

    O’Shea T, Hoydis J. An introduction to deep learning for the physical layer. IEEE Trans Cogn Commun Netw, 2017, 3: 563–575

  60. 60

    O’Shea T J, Erpek T, Clancy T C. Deep learning based MIMO communications. 2017. ArXiv: 1707.07980

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61501116, 61521061).

Author information

Correspondence to Chuan Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, X., Zhang, C., Tan, X. et al. AI for 5G: research directions and paradigms. Sci. China Inf. Sci. 62, 21301 (2019). https://doi.org/10.1007/s11432-018-9596-5

Download citation

Keywords

  • 5G mobile communication
  • AI techniques
  • network optimization
  • resource allocation
  • unified acceleration
  • end-to-end joint optimization