Cooperative transportation control of multiple mobile manipulators through distributed optimization

Abstract

This paper investigates the problem of distributed control of multiple redundant mobile manipulators to collectively transport an object tracking a desired trajectory with energy and manipulability optimized. To solve this optimization problem, formation control tasks are introduced as equality constraints with the variables being the velocities. In this paper, we propose a distributed proximal gradient algorithm searching for the optimal solution, with which the stability of the closed-loop system is proved. Simulations demonstrate the effectiveness of the proposed distributed optimization scheme and proximal algorithm.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Huntsberger T L, Trebi-Ollennu A, Aghazarian H, et al. Distributed control of multi-robot systems engaged in tightly coupled tasks. Auton Robot, 2004, 17: 79–92

    Google Scholar 

  2. 2

    Farivarnejad H, Wilson S, Berman S. Decentralized sliding mode control for autonomous collective transport by multirobot systems. In: Proceedings of IEEE Conference on Decision and Control, Las Vegas, 2016. 1826–1833

    Google Scholar 

  3. 3

    Yoshikawa T. Foundations of Robotics: Analysis and Control. Cambridge: The MIT Press, 1990

    Google Scholar 

  4. 4

    Li Z J, Ge S S. Fundamentals in Modeling and Control of Mobile Manipulators. Boca Raton: CRC Press, 2013

    Google Scholar 

  5. 5

    Abeygunawardhana P K W, Murakami T. Vibration suppression of two-wheel mobile manipulator using resonanceratio-control-based null-space control. IEEE Trans Ind Electron, 2010, 57: 4137–4146

    Google Scholar 

  6. 6

    Wei W, Mbede J B, Huang X H, et al. Neuro-fuzzy and model-based motion control for mobile manipulator among dynamic obstacles. Sci China Ser F-Inf Sci, 2003, 46: 14–30

    MATH  Google Scholar 

  7. 7

    Alonso-Mora J, Knepper R, Siegwart R, et al. Local motion planning for collaborative multi-robot manipulation of deformable objects. In: Proceedings of IEEE International Conference on Robotics and Automation, Seattle, 2015. 5495–5502

    Google Scholar 

  8. 8

    Li Z, Ge S S, Adams M, et al. Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica, 2008, 44: 776–784

    MathSciNet  Google Scholar 

  9. 9

    Tinos R, Terra M H, Ishihara J Y. Motion and force control of cooperative robotic manipulators with passive joints. IEEE Trans Control Syst Technol, 2006, 14: 725–734

    Google Scholar 

  10. 10

    Khatib O, Yokoi K, Chang K, et al. Coordination and decentralized cooperation of multiple mobile manipulators. J Robotic Syst, 1996, 13: 755–764

    Google Scholar 

  11. 11

    Wang Z J, Schwager M. Force-amplifying N-robot transport system (force-ANTS) for cooperative planar manipulation without communication. Int J Robot Res, 2016, 35: 1564–1586

    Google Scholar 

  12. 12

    Pereira G A S, Campos M F M, Kumar V. Decentralized algorithms for multi-robot manipulation via caging. Int J Robot Res, 2004, 23: 783–795

    Google Scholar 

  13. 13

    Fink J, Hsieh M A, Kumar V. Multi-robot manipulation via caging in environments with obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, 2008. 1471–1476

    Google Scholar 

  14. 14

    Wang L J, Meng B. Characteristic model-based consensus of networked heterogeneous robotic manipulators with dynamic uncertainties. Sci China Tech Sci, 2016, 59: 63–71

    Google Scholar 

  15. 15

    Dong Y, Chen J, Huang J. A self-tuning adaptive distributed observer approach to the cooperative output regulation problem for networked multi-agent systems. Int J Control, 2017. doi: 10.1080/00207179.2017.1411610

    Google Scholar 

  16. 16

    Liu X Y, Dou L H, Sun J. Consensus for networked multi-agent systems with unknown communication delays. J Franklin I, 2016, 53: 4176–4190

    MathSciNet  MATH  Google Scholar 

  17. 17

    Dong Y, Chen J, Huang J. Cooperative robust output regulation for second-order nonlinear multiagent systems with an unknown exosystem. IEEE Trans Autom Control, 2018, 63: 3418–3425

    MathSciNet  MATH  Google Scholar 

  18. 18

    Huang J. The consensus for discrete-time linear multi-agent systems under directed switching networks. IEEE Trans Autom Control, 2017, 62: 4086–4092

    MathSciNet  MATH  Google Scholar 

  19. 19

    Yang Q K, Fang H, Chen J, et al. Distributed global output-feedback control for a class of Euler-Lagrange systems. IEEE Trans Autom Control, 2017, 62: 4855–4861

    MathSciNet  MATH  Google Scholar 

  20. 20

    Li S, Zhang Y N, Jin L. Kinematic control of redundant manipulators using neural networks. IEEE Trans Neural Netw Learn Syst, 2017, 28: 2243–2254

    MathSciNet  Google Scholar 

  21. 21

    Cai B H, Zhang Y N. Different-level redundancy-resolution and its equivalent relationship analysis for robot manipulators using gradient-descent and Zhang’s neural-dynamic methods. IEEE Trans Ind Electron, 2012, 59: 3146–3155

    Google Scholar 

  22. 22

    Jin L, Li S, La H M, et al. Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans Ind Electron, 2017, 64: 4710–4720

    Google Scholar 

  23. 23

    Li S, He J B, Li Y M, et al. Distributed recurrent neural networks for cooperative control of manipulators: a gametheoretic perspective. IEEE Trans Neural Netw Learn Syst, 2017, 28: 415–426

    MathSciNet  Google Scholar 

  24. 24

    Liang S, Zeng X L, Hong Y G. Distributed nonsmooth optimization with coupled inequality constraints via modified lagrangian function. IEEE Trans Autom Control, 2018, 63: 1753–1759

    MathSciNet  MATH  Google Scholar 

  25. 25

    Liu Q S, Wang J. A second-order multi-agent network for bound-constrained distributed optimization. IEEE Trans Autom Control, 2015, 60: 3310–3315

    MathSciNet  MATH  Google Scholar 

  26. 26

    Zeng X L, Yi P, Hong Y G. Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans Autom Control, 2017, 62: 5227–5233

    MathSciNet  MATH  Google Scholar 

  27. 27

    Yi P, Hong Y G, Liu F. Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Syst Control Lett, 2015, 83: 45–52

    MathSciNet  MATH  Google Scholar 

  28. 28

    Tang C B, Li X, Wang Z, et al. Cooperation and distributed optimization for the unreliable wireless game with indirect reciprocity. Sci China Inf Sci, 2017, 60: 110205

    Google Scholar 

  29. 29

    Chen J, Gan MG, Huang J, et al. Formation control of multiple Euler-Lagrange systems via null-space-based behavioral control. Sci China Inf Sci, 2016, 59: 010202

    Google Scholar 

  30. 30

    Li C H, Zhang E C, Jiu L, et al. Optimal control on special Euclidean group via natural gradient algorithm. Sci China Inf Sci, 2016, 59: 112203

    Google Scholar 

  31. 31

    Fang H, Shang C S, Chen J. An optimization-based shared control framework with applications in multi-robot systems. Sci China Inf Sci, 2018, 61: 014201

    MathSciNet  Google Scholar 

  32. 32

    Taghirad H D, Bedoustani Y B. An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators. IEEE Trans Robot, 2011, 27: 1137–1143

    Google Scholar 

  33. 33

    Patchaikani P K, Behera L, Prasad G. A single network adaptive critic-based redundancy resolution scheme for robot manipulators. IEEE Trans Ind Electron, 2012, 59: 3241–3253

    Google Scholar 

  34. 34

    Li S, Chen S F, Liu B, et al. Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing, 2012, 91: 1–10

    Google Scholar 

  35. 35

    Zhang Y, Ge S S, Lee T H. A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans Syst Man Cybern B, 2004, 34: 2126–2132

    Google Scholar 

  36. 36

    TangWS,Wang J. A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity. IEEE Trans Syst Man Cybern B, 2001, 31: 98–105

    Google Scholar 

  37. 37

    Gueaieb W, Karray F, Al-Sharhan S. A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE/ASME Trans Mechatron, 2007, 12: 109–125

    Google Scholar 

  38. 38

    Parikh N, Boyd S. Proximal algorithms. Found Trend Opt, 2013, 1: 127–239

    Google Scholar 

  39. 39

    Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  40. 40

    Haddad W M, Chellaboina V. Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton: Princeton University Press, 2008

    Google Scholar 

  41. 41

    Yoshikawa T. Manipulability of robotic mechanisms. Int J Robot Res, 1985, 4: 3–9

    Google Scholar 

  42. 42

    Sverdrup-Thygeson J, Moe S, Pettersen K Y, et al. Kinematic singularity avoidance for robot manipulators using set-based manipulability tasks. In: Proceedings of IEEE Conference on Control Technology and Applications, Kohala Coast, 2017. 142–149

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61621063, 61573062, 61603094), in part by Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1208), in part by Beijing Education Committee Cooperation Building Foundation Project (Grant No. 2017CX02005), and in part by Beijing Advanced Innovation Center for Intelligent Robots and Systems (Beijing Institute of Technology), Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China. The authors wished to thank Prof. Hao FANG, Dr. Xianlin ZENG, and Dr. Qingkai YANG for constructive comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Kai, S. Cooperative transportation control of multiple mobile manipulators through distributed optimization. Sci. China Inf. Sci. 61, 120201 (2018). https://doi.org/10.1007/s11432-018-9588-0

Download citation

Keywords

  • multiple mobile manipulators
  • cooperative transportation control
  • motion planning
  • energy and manipulability
  • distributed optimization