Digital computation of linear canonical transform for local spectra with flexible resolution ability

This is a preview of subscription content, access via your institution.

References

  1. 1

    Collins S A. Lens-system diffraction integral written in terms of matrix optics. J Opt Soc Am, 1970, 60: 1168–1177

    Article  Google Scholar 

  2. 2

    Xu T Z, Li B Z. Linear Canonical Transform and its Application. Beijing: Science Press, 2013. 291–324

    Google Scholar 

  3. 3

    Healy J J, Kutay M A, Ozaktas H M, et al. Linear Canonical Transform: Theory and Applications. New York: Springer, 2016. 197–240

    Google Scholar 

  4. 4

    Hennelly B M, Sheridan J T. Fast numerical algorithm for the linear canonical transform. J Opt Soc Am A, 2005, 22: 928–937

    MathSciNet  Article  Google Scholar 

  5. 5

    Koc A, Ozaktas H M, Candan C, et al. Digital computation of linear canonical transforms. IEEE Trans Signal Process, 2008, 56: 2383–2394

    MathSciNet  Article  Google Scholar 

  6. 6

    Pei S C, Huang S G. Fast discrete linear canonical transform based on CM-CC-CM decomposition and FFT. IEEE Trans Signal Process, 2016, 64: 855–866

    MathSciNet  Article  Google Scholar 

  7. 7

    Goertzel G. An algorithm for the evaluation of finite trigonometric series. Am Math Mon, 1958, 65: 34–35

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61671063) and Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61421001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bingzhao Li.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, B. Digital computation of linear canonical transform for local spectra with flexible resolution ability. Sci. China Inf. Sci. 62, 49301 (2019). https://doi.org/10.1007/s11432-018-9585-1

Download citation