Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cooperative geometric localization for a ground target based on the relative distances by multiple UAVs


Based on the locations of several unmanned aerial vehicles (UAVs) and their relative distances from a target, a ground target cooperative geometric localization method that is more effective than a traditional approach is proposed in this paper. First, an algorithm for determining the location of the target is described. The effectiveness and suitability of the proposed algorithm are then shown. Next, to investigate the location accuracy of the proposed method, the influence of three critical factors, namely, the flight altitude, UAV position errors, and measurement errors, is analyzed. Furthermore, for the required location accuracy, the feasible regions of these factors are determined based on their influence, and the location accuracy will satisfy the requirements if all factors are within the feasible regions. Finally, simulation results from the MATLAB/Simulink toolbox are presented to show the effectiveness of the proposed method and the availability of the feasible regions.

This is a preview of subscription content, log in to check access.


  1. 1

    Li P, Yu X, Peng X Y, et al. Fault-tolerant cooperative control for multiple UAVs based on sliding mode techniques. Sci China Inf Sci, 2017, 60: 070204

  2. 2

    Zhang Y Z, Hu B, Li J W, et al. UAV multi-mission reconnaissance decision-making under uncertainty environment. J Northwestern Polytechnical Univ, 2016, 34: 1028–1034

  3. 3

    He W, Huang H, Chen Y, et al. Development of an autonomous flapping-wing aerial vehicle. Sci China Inf Sci, 2017, 60: 063201

  4. 4

    Li C Q, Li X B, Zhang J, et al. Analysis of airborne passive location precision based on multi-static cooperation. Modern Radar, 2017, 39: 11–14

  5. 5

    Zhu H M, Wang H Y, Sun S Y. Research on error correction method of single UAV based on Monte Carlo. Sci Tech Eng, 2017, 17: 255–259

  6. 6

    Esmailifar S M, Saghafi F. Cooperative localization of marine targets by UAVs. Mech Syst Signal Process, 2017, 87: 23–42

  7. 7

    Lee W, Bang H, Leeghim H. Cooperative localization between small UAVs using a combination of heterogeneous sensors. Aerospace Sci Tech, 2013, 27: 105–111

  8. 8

    Wang K, Ke Y, Chen B M. Autonomous reconfigurable hybrid tail-sitter UAV U-Lion. Sci China Inf Sci, 2017, 60: 033201

  9. 9

    Yang K, An J P, Bu X Y, et al. Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans Veh Technol, 2010, 59: 1558–1562

  10. 10

    Melchor-Aguilar D, Niculescu S I. Computing non-fragile PI controllers for delay models of TCP/AQM networks. Int J Control, 2009, 82: 2249–2259

  11. 11

    Zhu G, Feng D, Yan Z, et al. TOA localization algorithm using the linear-correction technique. J Xidian Univ, 2015, 42: 22–25, 32

  12. 12

    Grewal M S, Weill L R, Andrews A P. Global Positioning Systems, Inertial Navigation, and Integration. Hoboken: John Wiley & Sons, Inc., 2007, 3: 383–384

  13. 13

    Li W C, Wei P, Xiao X C. A robust TDOA-based location method and its performance analysis. Sci China Ser F-Inf Sci, 2009, 52: 876–882

  14. 14

    Fan X, Younan N H, Taylor C D. A perturbation analysis of the regularized constrained total least squares. IEEE Trans Circ Syst II, 1996, 43: 140–142

Download references


This work was supported by National Natural Science Foundation of China (Grant No. 61473229).

Author information

Correspondence to Yaohong Qu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Zhang, F., Wu, X. et al. Cooperative geometric localization for a ground target based on the relative distances by multiple UAVs. Sci. China Inf. Sci. 62, 10204 (2019).

Download citation


  • unmanned aerial vehicle
  • UAV
  • relative distance
  • cooperative localization
  • location effectiveness analysis
  • feasible regions