Sliding-mode-disturbance-observer-based adaptive neural control of uncertain discrete-time systems

This is a preview of subscription content, access via your institution.

References

  1. 1

    Abdelatti M, Yuan C Z, Zeng W, et al. Cooperative deterministic learning control for a group of homogeneous nonlinear uncertain robot manipulators. Sci China Inf Sci, 2018, 61: 112201

    MathSciNet  Article  Google Scholar 

  2. 2

    Gao Y F, Sun X M, Wang W. Decentralized backstepping adaptive output tracking of large-scale stochastic nonlinear systems. Sci China Inf Sci, 2017, 60: 120207

    MathSciNet  Article  Google Scholar 

  3. 3

    Park G, Shim H. Guaranteeing almost fault-free tracking performance from transient to steady-state: a disturbance observer approach. Sci China Inf Sci, 2018, 61: 070224

    MathSciNet  Article  Google Scholar 

  4. 4

    Li Y M, Tong S C. Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans Cybern, 2017, 47: 1007–1016

    Article  Google Scholar 

  5. 5

    Liu Y J, Gao Y, Tong S C, et al. A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Trans Neural Netw Learn Syst, 2016, 27: 139–150

    MathSciNet  Article  Google Scholar 

  6. 6

    Chen M, Shao S Y, Jiang B. Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans Cybern, 2017, 47: 3110–3123

    Article  Google Scholar 

  7. 7

    Han J Q, Yuan L L. The discrete form of tracking-differentiator. J Syst Sci Math Sci, 1999, 19: 268–273

    MathSciNet  MATH  Google Scholar 

  8. 8

    Zhang Y M, Chamseddine A, Rabbath C A, et al. Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J Franklin Inst, 2013, 350: 2396–2422

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61573184) and Jiangsu Innovation Program for Graduate Education (Grant No. KYLX16_0375).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mou Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Chen, M. Sliding-mode-disturbance-observer-based adaptive neural control of uncertain discrete-time systems. Sci. China Inf. Sci. 63, 149204 (2020). https://doi.org/10.1007/s11432-018-9574-3

Download citation