Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Code constructions for multi-node exact repair in distributed storage

  • 74 Accesses

  • 1 Citations

Abstract

We study the problem of centralized exact repair of multiple failures in distributed storage. We present constructions that achieve a new set of interior points under exact repair. The constructions build upon the layered code construction by Tian et al., designed for exact repair of single failure. We firstly improve upon the layered construction for general system parameters. Then, we extend the improved construction to support the repair of multiple failures, with varying number of helpers. In particular, for some parameters, we prove the optimality of one point in terms of the storage size and the repair bandwidth for multiple erasures. Finally, considering minimum bandwidth cooperative repair (MBCR) codes as centralized repair codes, we determine explicitly the best achievable region obtained by space-sharing among all known points, including the MBCR point.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Dimakis A G, Godfrey P, Yunnan W, et al. Network coding for distributed storage systems. IEEE Trans Inform Theor, 2010, 9: 4539–4551

  2. 2

    Rashmi K V, Shah N B, Kumar P V. Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction. IEEE Trans Inform Theor, 2011, 57: 5227–5239

  3. 3

    Shah N B, Rashmi K V, Kumar P V, et al. Interference alignment in regenerating codes for distributed storage: necessity and code constructions. IEEE Trans Inform Theor, 2012, 58: 2134–2158

  4. 4

    Suh C, Ramchandran K. Exact-repair MDS code construction using interference alignment. IEEE Trans Inform Theor, 2011, 57: 1425–1442

  5. 5

    Rawat A S, Koyluoglu O O, Vishwanath S. Progress on high-rate MSR codes: enabling arbitrary number of helper nodes. In: Proceedings of Information Theory and Applications Workshop, San Diego, 2016. 1–6

  6. 6

    Goparaju S, Fazeli A, Vardy A. Minimum storage regenerating codes for all parameters. IEEE Trans Inform Theor, 2017, 63: 6318–6328

  7. 7

    Cadambe V R, Jafar S A, Maleki H, et al. Asymptotic interference alignment for optimal repair of MDS codes in distributed storage. IEEE Trans Inform Theor, 2013, 59: 2974–2987

  8. 8

    Tamo I, Wang Z, Bruck J. Zigzag codes: MDS array codes with optimal rebuilding. IEEE Trans Inform Theor, 2013, 59: 1597–1616

  9. 9

    Ye M, Barg A. Explicit constructions of high-rate MDS array codes with optimal repair bandwidth. IEEE Trans Inform Theor, 2017, 63: 2001–2014

  10. 10

    Vajha M, Babu B S, Kumar P V. Explicit MSR codes with optimal access, optimal sub-packetization and small field size for d = k + 1, k + 2, k + 3. 2018. ArXiv: 1804.00598

  11. 11

    Shah N B, Rashmi K V, Kumar P V, et al. Distributed storage codes with repair-by-transfer and nonachievability of interior points on the storage-bandwidth tradeoff. IEEE Trans Inform Theor, 2012, 58: 1837–1852

  12. 12

    Elyasi M, Mohajer S. Determinant coding: a novel framework for exact-repair regenerating codes. IEEE Trans Inform Theor, 2016, 62: 6683–6697

  13. 13

    Elyasi M, Mohajer S. A probabilistic approach towards exact-repair regeneration codes. In: Proceedings of Annual Allerton Conference on Communication, Control, and Computing, Monticello, 2015. 865–872

  14. 14

    Tian C. A note on the rate region of exact-repair regenerating codes. 2015. ArXiv: 1503.00011

  15. 15

    Tian C. Characterizing the rate region of the (4,3,3) exact-repair regenerating codes. IEEE J Sel Areas Commun, 2014, 32: 967–975

  16. 16

    Senthoor K, Sasidharan B, Kumar P V. Improved layered regenerating codes characterizing the exact-repair storagerepair bandwidth tradeoff for certain parameter sets. In: Proceedings of IEEE Information Theory Workshop, Jerusalem, 2015. 1–5

  17. 17

    Tian C, Sasidharan B, Aggarwal V, et al. Layered exact-repair regenerating codes via embedded error correction and block designs. IEEE Trans Inform Theor, 2015, 61: 1933–1947

  18. 18

    Sasidharan B, Senthoor K, Kumar P V. An improved outer bound on the storage-repair-bandwidth tradeoff of exactrepair regenerating codes. In: Proceedings of IEEE International Symposium on Information Theory, Honolulu, 2014. 2430–2434

  19. 19

    Duursma I M. Outer bounds for exact repair codes. 2014. ArXiv: 1406.4852

  20. 20

    Sasidharan B, Prakash N, Krishnan M N, et al. Outer bounds on the storage-repair bandwidth trade-off of exact-repair regenerating codes. Int J Inform Coding Theor, 2016, 3: 255–298

  21. 21

    Duursma I M. Shortened regenerating codes. 2015. ArXiv: 1505.00178

  22. 22

    Kermarrec A M, Le Scouarnec N, Straub G. Repairing multiple failures with coordinated and adaptive regenerating codes. In: Proceedings of International Symposium on Network Coding, Beijing, 2011. 1–6

  23. 23

    Rawat A S, Koyluoglu O O, Vishwanath S. Centralized repair of multiple node failures with applications to communication efficient secret sharing. 2016. ArXiv: 1603.04822

  24. 24

    Shum K W, Hu Y. Cooperative regenerating codes. IEEE Trans Inform Theor, 2013, 59: 7229–7258

  25. 25

    Zorgui M, Wang Z. Centralized multi-node repair in distributed storage. In: Proceedings of Annual Allerton Conference on Communication, Control, and Computing, Monticello, 2016. 617–624

  26. 26

    Ye M, Barg A. Optimal MDS codes for cooperative repair. 2018. ArXiv: 1801.09665

  27. 27

    Li J, Li B. Cooperative repair with minimum-storage regenerating codes for distributed storage. In: Prcoceedings of IEEE INFOCOM, Toronto, 2014. 316–324

  28. 28

    Wang A, Zhang Z. Exact cooperative regenerating codes with minimum-repair-bandwidth for distributed storage. In: Prcoceedings of IEEE INFOCOM, Turin, 2013. 400–404

  29. 29

    Zorgui M, Wang Z. Centralized multi-node repair for minimum storage regenerating codes. In: Proceedings of IEEE International Symposium on Information Theory, Aachen, 2017. 2213–2217

  30. 30

    Goparaju S, El Rouayheb S, Calderbank R. New codes and inner bounds for exact repair in distributed storage systems. In: Proceedings of IEEE International Symposium on Information Theory, Honolulu, 2014. 1036–1040

  31. 31

    Zorgui M, Wang Z. Centralized multi-node repair regenerating codes. 2017. ArXiv: 1706.05431

  32. 32

    Wang Z, Tamo I, Bruck J. Optimal rebuilding of multiple erasures in MDS codes. IEEE Trans Inform Theor, 2017, 63: 1084–1101

  33. 33

    Blaum M, Brady J, Bruck J, et al. EVENODD: an efficient scheme for tolerating double disk failures in RAID architectures. IEEE Trans Comput, 1995, 44: 192–202

  34. 34

    Keevash P. The existence of designs. 2014. ArXiv: 1401.3665

  35. 35

    Colbourn C J. CRC Handbook of Combinatorial Designs. Boca Raton: CRC Press, 2010

  36. 36

    Kamath G M, Prakash N, Lalitha V, et al. Codes with local regeneration and erasure correction. IEEE Trans Inform Theor, 2014, 60: 4637–4660

  37. 37

    Rawat A S, Silberstein N, Koyluoglu O O, et al. Optimal locally repairable codes with local minimum storage regeneration via rank-metric codes. In: Prcoceedings of Information Theory and Applications Workshop, San Diego, 2013. 1–8

Download references

Author information

Correspondence to Marwen Zorgui.

Additional information

Invited article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zorgui, M., Wang, Z. Code constructions for multi-node exact repair in distributed storage. Sci. China Inf. Sci. 61, 100304 (2018). https://doi.org/10.1007/s11432-018-9516-6

Download citation

Keywords

  • regenerating codes
  • exact repair
  • multiple failures
  • interior points
  • Steiner systems