Silicon-based on-chip hybrid (de)multiplexers

Abstract

A review is given on the recent progress of silicon-based on-chip hybrid multiplexers, which are the key elements to enable more than one (de)multiplexing techniques simultaneously, including wavelength-division-multiplexing (WDM), polarization-division-multiplexing (PDM), and mode-division-multiplexing (MDM). This helps enhance the link capacity of optical interconnects multiplexed with many channels. The first part gives a review on the recent developed silicon-based hybrid WDM-PDM (de)multiplexers enabling WDM and PDM simultaneously, which helps achieve 2N channels by introducing N wavelengths and dual polarizations. The recent progress of silicon-based hybrid WDM-MDM (de)multiplexers developed is reviewed in the second part. With the hybrid WDM-MDM (de)multiplexers, one can achieve N×M channels by using N wavelengths and M guided-modes. Finally, the silicon-based hybrid MDM-PDM (de)multiplexers are presented as the key to enhance the link capacity for a single wavelength carrier.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications. J Opt, 2016, 18: 063002

    Article  Google Scholar 

  2. 2

    Tkach R W. Scaling optical communications for the next decade and beyond. Bell Labs Tech J, 2010, 14: 3–9

    Article  Google Scholar 

  3. 3

    Eldada L. Advances in ROADM technologies and subsystems. Proc SPIE, 2005, 5970: 611–620

    Google Scholar 

  4. 4

    Dong P, Chen Y K, Duan G H, et al. Silicon photonic devices and integrated circuits. Nanophotonics, 2014, 3: 215–228

    Article  Google Scholar 

  5. 5

    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photonic, 2013, 7: 354–362

    Article  Google Scholar 

  6. 6

    Winzer P J. Making spatial multiplexing a reality. Nat Photonic, 2014, 8: 345–348

    Article  Google Scholar 

  7. 7

    van Uden R G H, Correa R A, Lopez E A, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonic, 2014, 8: 865–870

    Article  Google Scholar 

  8. 8

    Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt, 1982, 21: 1950–1955

    Article  Google Scholar 

  9. 9

    Randel S, Ryf R, Sierra A, et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Opt Express, 2011, 19: 16697–16707

    Article  Google Scholar 

  10. 10

    Dai D X, Bowers J E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics, 2014, 3: 283–311

    Article  Google Scholar 

  11. 11

    Doerr C R, Taunay T F. Silicon photonics core-, wavelength-, and polarization-diversity receiver. IEEE Photonic Technol Lett, 2011, 23: 597–599

    Article  Google Scholar 

  12. 12

    Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl, 2012, 1: 500–505

    Article  Google Scholar 

  13. 13

    Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18: 073003

    Article  Google Scholar 

  14. 14

    Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quant Electron, 2006, 12: 1678–1687

    Article  Google Scholar 

  15. 15

    Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol, 2006, 24: 4600–4615

    Article  Google Scholar 

  16. 16

    Kopp C, Bernabé S, Bakir B B, et al. Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J Sel Top Quant Electron, 2011, 17: 498–509

    Article  Google Scholar 

  17. 17

    Tsybeskov L, Lockwood D J, Ichikawa M. Silicon photonics: CMOS going optical [scanning the issue]. Proc IEEE, 2009, 97: 1161–1165

    Article  Google Scholar 

  18. 18

    Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nat Photonic, 2010, 4: 492–494

    Article  Google Scholar 

  19. 19

    Lim A E J, Song J F, Fang Q, et al. Review of silicon photonics foundry efforts. IEEE J Sel Top Quant Electron, 2014, 20: 405–416

    Article  Google Scholar 

  20. 20

    Streshinsky M, Ding R, Liu Y, et al. The road to affordable, large-scale silicon photonics. Opt Photonic News, 2013, 24: 32

    Article  Google Scholar 

  21. 21

    Dumon P, Bogaerts W, Wiaux V, et al. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonic Technol Lett, 2004, 16: 1328–1330

    Article  Google Scholar 

  22. 22

    Selvaraja S K, Jaenen P, Bogaerts W, et al. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J Lightwave Technol, 2009, 27: 4076–4083

    Article  Google Scholar 

  23. 23

    Bogaerts W, Selvaraja S K, Dumon P, et al. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J Sel Top Quant Electron, 2010, 16: 33–44

    Article  Google Scholar 

  24. 24

    Bogaerts W, Taillaert D, Dumon P, et al. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt Express, 2007, 15: 1567–1578

    Article  Google Scholar 

  25. 25

    Pathak S, van Thourhout D, Bogaerts W. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Opt Lett, 2013, 38: 2961–2964

    Article  Google Scholar 

  26. 26

    Pathak S, Vanslembrouck M, Dumon P, et al. Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonic Technol Lett, 2014, 26: 718–721

    Article  Google Scholar 

  27. 27

    Pathak S, Dumon P, van Thourhout D, et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonic J, 2014, 6: 1–9

    Article  Google Scholar 

  28. 28

    Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993–6996

    Article  Google Scholar 

  29. 29

    Bogaerts W, de Heyn P, van Vaerenbergh T, et al. Silicon microring resonators. Laser Photonic Rev, 2012, 6: 47–73

    Article  Google Scholar 

  30. 30

    Dong P, Qian W, Liang H, et al. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt Express, 2010, 18: 9852–9858

    Article  Google Scholar 

  31. 31

    Dong P, Feng N N, Feng D Z, et al. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt Express, 2010, 18: 23784–23789

    Article  Google Scholar 

  32. 32

    Little B E, Chu S T, Hryniewicz J V, et al. Filter synthesis for periodically coupled microring resonators. Opt Lett, 2000, 25: 344–346

    Article  Google Scholar 

  33. 33

    Grover R, Van V, Ibrahim T A, et al. Parallel-cascaded semiconductor microring resonators for high-order and wide- FSR filters. J Lightwave Technol, 2002, 20: 900–905

    Article  Google Scholar 

  34. 34

    Tobing L Y M, Dumon P, Baets R, et al. Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays. Opt Lett, 2008, 33: 2512–2514

    Article  Google Scholar 

  35. 35

    Dahlem M S, Holzwarth C W, Khilo A, et al. Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems. Opt Express, 2011, 19: 306–316

    Article  Google Scholar 

  36. 36

    Luo X S, Song J F, Feng S Q, et al. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonic Technol Lett, 2012, 24: 821–823

    Article  Google Scholar 

  37. 37

    Tan Y, Chen S T, Dai D X. Polarization-selective microring resonators. Opt Express, 2017, 25: 4106–4119

    Article  Google Scholar 

  38. 38

    Xia F, Rooks M, Sekaric L, et al. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt Express, 2007, 15: 11934–11941

    Article  Google Scholar 

  39. 39

    Chen P X, Chen S T, Guan X W, et al. High-order microring resonators with bent couplers for a box-like filter response. Opt Lett, 2014, 39: 6304–6307

    Article  Google Scholar 

  40. 40

    Dong P. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J Sel Top Quant Electron, 2016, 22: 370–378

    Article  Google Scholar 

  41. 41

    Liang T K, Tsang H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photonic Technol Lett, 2005, 17: 393–395

    Article  Google Scholar 

  42. 42

    Pfau T, Peveling R, Hauden J, et al. Coherent digital polarization diversity receiver for real-time polarizationmultiplexed QPSK transmission at 2.8 Gb/s. IEEE Photonic Technol Lett, 2007, 19: 1988–1990

    Article  Google Scholar 

  43. 43

    Wang Z C, Dai D X. Ultrasmall Si-nanowire-based polarization rotator. J Opt Soc Am B, 2008, 25: 747–753

    Article  Google Scholar 

  44. 44

    Aamer M, Gutierrez A M, Brimont A, et al. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photonic Technol Lett, 2012, 24: 2031–2034

    Article  Google Scholar 

  45. 45

    Fukuda H, Yamada K, Tsuchizawa T, et al. Silicon photonic circuit with polarization diversity. Opt Express, 2008, 16: 4872–4880

    Article  Google Scholar 

  46. 46

    Dai D X, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express, 2011, 19: 18614–18620

    Article  Google Scholar 

  47. 47

    Wang J, Liang D, Tang Y B, et al. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Opt Lett, 2013, 38: 4–6

    Article  Google Scholar 

  48. 48

    Dai D X. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. J Lightwave Technol, 2012, 30: 3281–3287

    Article  Google Scholar 

  49. 49

    Lu Z Q, Wang Y, Zhang F, et al. Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers. Opt Express, 2015, 23: 29413–29422

    Article  Google Scholar 

  50. 50

    Dai D X, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett, 2016, 41: 2346–2349

    Article  Google Scholar 

  51. 51

    Xu Y, Xiao J B. Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers. Opt Lett, 2016, 41: 773–776

    Article  Google Scholar 

  52. 52

    Hsu C W, Chang T K, Chen J Y, et al. 813 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler. Appl Opt, 2016, 55: 3313–3318

    Article  Google Scholar 

  53. 53

    Wu H, Tan Y, Dai D X. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express, 2017, 25: 6069–6075

    Article  Google Scholar 

  54. 54

    Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol, 2012, 30: 2421–2426

    Article  Google Scholar 

  55. 55

    Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38: 1854–1856

    Article  Google Scholar 

  56. 56

    Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Appl Opt, 2012, 51: 2778–2783

    Article  Google Scholar 

  57. 57

    Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21: 25113–25119

    Article  Google Scholar 

  58. 58

    Frellsen L F, Ding Y, Sigmund O, et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt Express, 2016, 24: 16866–16873

    Article  Google Scholar 

  59. 59

    Xing J J, Li Z Y, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38: 3468–3470

    Article  Google Scholar 

  60. 60

    Sun C L, Yu Y, Chen G Y, et al. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett, 2016, 41: 5511–5514

    Article  Google Scholar 

  61. 61

    Love J D, Vance R W C, Joblin A. Asymmetric, adiabatic multipronged planar splitters. Opt Quant Electron, 1996, 28: 353–369

    Article  Google Scholar 

  62. 62

    Dai D X, Wang S P. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front Optoelectron, 2016, 9: 450–465

    Article  Google Scholar 

  63. 63

    Dai D X, Wang J. Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects. IEEE Photonic Soc News, 2014, 28: 8–14

    Google Scholar 

  64. 64

    Guo D F, Chu T. Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express, 2017, 25: 9160–9170

    Article  Google Scholar 

  65. 65

    Pan T H, Tseng S Y. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express, 2015, 23: 10405–10412

    Article  Google Scholar 

  66. 66

    Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express, 2005, 13: 9381–9387

    Article  Google Scholar 

  67. 67

    Ding Y H, Xu J, Da R F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21: 10376–10382

    Article  Google Scholar 

  68. 68

    Qiu H Y, Yu H, Hu T, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express, 2013, 21: 17904–17911

    Article  Google Scholar 

  69. 69

    Chen S T, Shi Y C, He S L, et al. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-oninsulator nanowires for PDM-WDM systems. Opt Express, 2015, 23: 12840–12849

    Article  Google Scholar 

  70. 70

    Tan Y, Wu H, Dai D X. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing. J Lightwave Technol, 2018, 36: 2051–2058

    Article  Google Scholar 

  71. 71

    Guo T, Zhang M, Yin Y L, et al. A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators. IEEE Photonic Technol Lett, 2017, 29: 419–422

    Article  Google Scholar 

  72. 72

    Lee H S, Kiravittaya S, Kumar S, et al. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation. Appl Phys Lett, 2009, 95: 191109

    Article  Google Scholar 

  73. 73

    Schrauwen J, van Thourhout D, Baets R. Trimming of silicon ring resonator by electron beam induced compaction and strain. Opt Express, 2008, 16: 3738–3743

    Article  Google Scholar 

  74. 74

    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photonic, 2013, 7: 354–362

    Article  Google Scholar 

  75. 75

    van Uden R G H, Correa R A, Lopez E A, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonic, 2014, 8: 865–870

    Article  Google Scholar 

  76. 76

    Zhao N B, Li X Y, Li G F, et al. Capacity limits of spatially multiplexed free-space communication. Nat Photonic, 2015, 9: 822–826

    Article  Google Scholar 

  77. 77

    Gabrielli L H, Liu D, Johnson S G, et al. On-chip transformation optics for multimode waveguide bends. Nat Commun, 2012, 3: 1217

    Article  Google Scholar 

  78. 78

    Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23: 28376–28388

    Article  Google Scholar 

  79. 79

    Driscoll J B, Chen C P, Grote R R, et al. A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel. Opt Express, 2014, 22: 18543

    Article  Google Scholar 

  80. 80

    Han L S, Liang S, Xu J J, et al. Simultaneous wavelength-and mode-division (de)multiplexing for high-capacity on-chip data transmission link. IEEE Photonic J, 2016, 8: 1–10

    Google Scholar 

  81. 81

    Ji K, Chen H M. A hybrid multiplexer for wavelength/mode-division based on photonic crystals. Proc SPIE, 2017, 244: 102440

    Google Scholar 

  82. 82

    Tan Y, Wu H, Wang S P, et al. Silicon-based hybrid demultiplexer for wavelength-and mode-division multiplexing. Opt Lett, 2018, 43: 1962–1965

    Article  Google Scholar 

  83. 83

    Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993–6996

    Article  Google Scholar 

  84. 84

    Dai D X, Wang J, Chen S T, et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser Photonic Rev, 2015, 9: 339–344

    Article  Google Scholar 

  85. 85

    Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 3069

    Article  Google Scholar 

  86. 86

    Yang Y D, Li Y, Huang Y Z, et al. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express, 2014, 22: 22172–22183

    Article  Google Scholar 

  87. 87

    Wang S P, Wu H, Tsang H K, et al. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt Lett, 2016, 41: 5298–5301

    Article  Google Scholar 

  88. 88

    Wang S P, Feng X L, Gao S M, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt Lett, 2017, 42: 2802–2805

    Article  Google Scholar 

  89. 89

    Wang S P, Wu H, Zhang M, et al. A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon. IEEE Photonic Technol Lett, 2018, 30: 1194–1197

    Article  Google Scholar 

  90. 90

    Dai D X, Wang J, Shi Y C. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38: 1422–1424

    Article  Google Scholar 

  91. 91

    Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photonic Rev, 2014, 8: 18–22

    Article  Google Scholar 

  92. 92

    Wang J, Chen P X, Chen S T, et al. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt Express, 2014, 22: 12799–12807

    Article  Google Scholar 

  93. 93

    Soldano L B, Pennings E C M. Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol, 1995, 13: 615–627

    Article  Google Scholar 

  94. 94

    Chen S T, Shi Y C, He S L, et al. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photonic Technol Lett, 2016, 28: 1874–1877

    Article  Google Scholar 

  95. 95

    Dai D X, Li C L, Wang S P, et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonic Rev, 2017, 12: 1700109

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 61725503, 61422510, 61431166001), and Zhejiang Provincial Natural Science Foundation (Grant No. Z18F050002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daoxin Dai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wu, H., Tan, Y. et al. Silicon-based on-chip hybrid (de)multiplexers. Sci. China Inf. Sci. 61, 080407 (2018). https://doi.org/10.1007/s11432-018-9504-6

Download citation

Keywords

  • silicon
  • photonics
  • (de)multiplexing
  • wavelength
  • mode
  • polarization
  • waveguide