Fabrication of InP-based monolithically integrated laser transmitters

Abstract

InP-based photonic integrated circuits (PICs) have aroused great interest in recent years to meet the needs of future high-capacity and high-performance optical systems. With the advantages of small size, low power consumption, low cost, high reliability, InP-based PICs are promising solutions to replace the multiple discrete devices used in various systems. In this paper, we will review the design, fabrication, key integration technology and performance of several kinds of InP-based monolithically integrated transmitters developed in our group in recent years. Particular attention will be paid to the electro-absorption modulated laser (EML), multi-wavelength distributed feedback (DFB) laser arrays, widely tunable distributed reflector (DBR) lasers and their arrays, integrated amplified feedback lasers (AFL), and few-mode transmitters.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kilper D, Bergman K, Chan V W S, et al. Optical networks come of age. Opt Photonic News, 2014, 25: 50–57

    Article  Google Scholar 

  2. 2

    Nicholes S C, Masanovic M L, Jevremovic B, et al. An 8×8 InP monolithic tunable optical router (MOTOR) packet forwarding chip. J Lightwave Technol, 2010, 28: 641–650

    Article  Google Scholar 

  3. 3

    Corzine S W, Evans P, Fisher M, et al. Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems. IEEE Photonic Technol Lett, 2010, 22: 1015–1017

    Article  Google Scholar 

  4. 4

    Tolstikhin V I, Densmore A, Logvin Y, et al. 44-channel optical power monitor based on an Echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate. In: Proceedings of Optical Fiber Communications Conference, Atlanta, 2003

    Google Scholar 

  5. 5

    Tahvili S, Latkowski S, Smalbrugge B, et al. InP-based integrated optical pulse shaper: demonstration of chirp compensation. IEEE Photonic Technol Lett, 2013, 25: 450–453

    Article  Google Scholar 

  6. 6

    Liang D, Fiorentino M, Srinivasan S, et al. Optimization of hybrid silicon microring lasers. IEEE Photonic J, 2011, 3: 580–587

    Article  Google Scholar 

  7. 7

    Kurczveil G, Heck M J, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quant Electron, 2011, 17: 1521–1527

    Article  Google Scholar 

  8. 8

    Srinivasan S, Tang Y, Read G, et al. Hybrid silicon devices for energy-efficient optical transmitters. IEEE Micro, 2013, 33: 22–31

    Article  Google Scholar 

  9. 9

    Arafin S, Coldren L A. Advanced InP photonic integrated circuits for communication and sensing. IEEE J Sel Top Quant Electron, 2018, 24: 6100612

    Article  Google Scholar 

  10. 10

    Kihara T, Nitta Y, Suda H, et al. Wavelength control of arrayed waveguide by MOVPE selective area growth. J Cryst Growth, 2000, 221: 196–200

    Article  Google Scholar 

  11. 11

    Sasaki T, Yamaguchi M, Kitamura M. Monolithically integrated multi-wavelength MQW-DBR laser diodes fabricated by selective metalorganic vapor phase epitaxy. J Cryst Growth, 1994, 145: 846–851

    Article  Google Scholar 

  12. 12

    Kobayashi W, Arai M, Yamanaka T, et al. Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure. J Lightwave Technol, 2010, 28: 164–171

    Article  Google Scholar 

  13. 13

    Cheng Y B, Pan J Q, Liang S, et al. Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser. J Cryst Growth, 2007, 308: 297–301

    Article  Google Scholar 

  14. 14

    Cheng Y B, Pan J Q, Wang Y, et al. 40-Gb/s low chirp electroabsorption modulator integrated with DFB laser. IEEE Photonic Technol Lett, 2009, 21: 356–358

    Article  Google Scholar 

  15. 15

    Zhu H L, Liang S, Zhao L J, et al. A selective area growth double stack active layer electroabsorption modulator integrated with a distributed feedback laser. Chinese Sci Bull, 2009, 54: 3627–3632

    Article  Google Scholar 

  16. 16

    Deng Q F, Zhu H L, Xie X, et al. Low chirp EMLs fabricated by combining SAG and double stack active layer techniques. IEEE Photonic J, 2018, 10: 7902007

    Google Scholar 

  17. 17

    Zah C E, Amersfoort M R, Pathak B N, et al. Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks. IEEE J Sel Top Quant Electron, 1997, 3: 584–597

    Article  Google Scholar 

  18. 18

    Corzine S W, Evans P, Fisher M, et al. Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems. IEEE Photonic Technol Lett, 2010, 22: 1015–1017

    Article  Google Scholar 

  19. 19

    Li G P, Makino T, Sarangan A, et al. 16-wavelength gain-coupled DFB laser array with fine tunability. IEEE Photonic Technol Lett, 1996, 8: 22–24

    Article  Google Scholar 

  20. 20

    Young M G, Koren U, Miller B I, et al. A 16×1 wavelength division multiplexer with integrated distributed Bragg reflector lasers and electroabsorption modulators. IEEE Photonic Technol Lett, 1993, 5: 908–910

    Article  Google Scholar 

  21. 21

    Zhang C, Liang S, Zhu H L, et al. The fabrication of 10-channel DFB laser array by SAG technology. Opt Commun, 2013, 311: 6–10

    Article  Google Scholar 

  22. 22

    Zhang C, Liang S, Zhu H L, et al. Multi-channel DFB laser arrays fabricated by SAG technology. Opt Commun, 2013, 300: 230–235

    Article  Google Scholar 

  23. 23

    Zhang C, Liang S, Ma L, et al. Multi-channel DFB laser array fabricated by SAG with optimized epitaxy conditions. Chin Opt Lett, 2013, 11: 041401

    Article  Google Scholar 

  24. 24

    Zhang C, Zhu H L, Liang S, et al. Monolithically integrated 4-channel-selectable light sources fabricated by the SAG technology. IEEE Photonic J, 2013, 5: 1400407

    Article  Google Scholar 

  25. 25

    Zhang C, Zhu H L, Liang S, et al. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology. Opt Laser Technol, 2014, 64: 17–22

    Article  Google Scholar 

  26. 26

    Xu J, Liang S, Zhang Z, et al. EML array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer. Opt Laser Technol, 2017, 91: 46–50

    Article  Google Scholar 

  27. 27

    Zhang C, Liang S, Zhu H L, et al. A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings. Opt Express, 2012, 20: 29620–29625

    Article  Google Scholar 

  28. 28

    Zhang C, Liang S, Zhu H L, et al. Multichannel DFB laser arrays fabricated by upper SCH layer SAG technique. IEEE J Quant Electron, 2014, 50: 92–97

    Article  Google Scholar 

  29. 29

    Xu J J, Liang S, Qiao L J, et al. Laser arrays with 25-GHz channel spacing fabricated by combining SAG and REC techniques. IEEE Photonic Technol Lett, 2016, 28: 2249–2252

    Article  Google Scholar 

  30. 30

    Shi Y C, Li SM, Li L Y, et al. Study of the multiwavelength DFB semiconductor laser array based on the reconstructionequivalent-chirp technique. J Lightwave Technol, 2013, 31: 3243–3250

    Article  Google Scholar 

  31. 31

    Tohmori Y, Jiang X, Arai S, et al. Novel structure GaInAsP/InP 1.5–1.6 μm bundle integrated-guide (BIG) distributed bragg reflector laser. Jpn J Appl Phys, 1985, 24: 399–401

    Article  Google Scholar 

  32. 32

    Han L S, Liang S, Wang H T, et al. Fabrication of low-cost multiwavelength laser arrays for OLTs in WDM-PONs by combining the SAG and BIG techniques. IEEE Photonic J, 2015, 7: 1–7

    Google Scholar 

  33. 33

    Park S J, Lee C H, Jeong K T, et al. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J Lightwave Technol, 2004, 22: 2582–2591

    Article  Google Scholar 

  34. 34

    Banerjee A, Park Y, Clarke F, et al. Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review. J Opt Netw, 2005, 4: 737–758

    Article  Google Scholar 

  35. 35

    Ponzini F, Cavaliere F, Berrettini G, et al. Evolution scenario toward WDM-PON. J Opt Commun Netw, 2009, 1: 25–34

    Article  Google Scholar 

  36. 36

    Raring J W, Johansson L A, Skogen E J, et al. 40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters. J Lightwave Technol, 2007, 25: 239–248

    Article  Google Scholar 

  37. 37

    Johnson J E, Ketelsen L J P, Geary J M, et al. 10 Gb/s transmission using an electroabsorption-modulated distributed Bragg reflector laser with integrated semiconductor optical amplifier. In: Proceedings of Optical Fiber Communication Conference and Exhibit, Anaheim, 2013

    Google Scholar 

  38. 38

    Kim S B, Sim J S, Kim K S, et al. Selective-area MOVPE growth for 10 Gbit/s electroabsorption modulator integrated with a tunable DBR laser. J Cryst Growth, 2007, 298: 672–675

    Article  Google Scholar 

  39. 39

    Weber J P. Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters. IEEE J Quant Electron, 1994, 30: 1801–1816

    Article  Google Scholar 

  40. 40

    Han L S, Liang S, Zhang C, et al. Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON. Chinese Opt Lett, 2014, 12: 091402

    Article  Google Scholar 

  41. 41

    Yu L Q, Wang H T, Lu D, et al. A widely tunable directly modulated DBR laser with high linearity. IEEE Photonic J, 2014, 6: 1501308

    Google Scholar 

  42. 42

    Zhang C, Liang S, Zhu H L, et al. Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with Ti heaters. Opt Lett, 2013, 38: 3050–3053

    Article  Google Scholar 

  43. 43

    Zhang C, Liang S, Zhu H L, et al. Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure. Opt Laser Technol, 2013, 54: 148–150

    Article  Google Scholar 

  44. 44

    Han L H, Liang S, Xu J J, et al. DBR laser with over 20 nm wavelength tuning range. IEEE Photonic Technol Lett, 2016, 28: 943–946

    Google Scholar 

  45. 45

    Zhou D B, Liang S, Zhao L J, et al. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers. Opt Express, 2017, 25: 2341–2346

    Article  Google Scholar 

  46. 46

    Han L H, Liang S, Wang H T, et al. Electroabsorption-modulated widely tunable DBR laser transmitter for WDMPONs. Opt Express, 2014, 22: 30368–30376

    Article  Google Scholar 

  47. 47

    Hara K, Nakamura H, Kimura S, et al. Flexible load balancing technique using dynamic wavelength bandwidth allocation (DWBA) toward 100 Gbit/s-class-WDM/TDM-PON. In: Proceedings of the 36th European Conference and Exhibition on Optical Communication, Torino, 2010

    Google Scholar 

  48. 48

    Xu J J, Han L S, Hou L P, et al. EAM modulated DBR laser array for TWDM-PON applications. In: Proceedings of IEEE Photonics Conference (IPC), Waikoloa, 2016

    Google Scholar 

  49. 49

    Yu L Q, Lu D, Pan B W, et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation. J Lightwave Technol, 2014, 32: 3595–3601

    Article  Google Scholar 

  50. 50

    Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE J Quant Electron, 1980, 16: 347–355

    Article  Google Scholar 

  51. 51

    Pan B W, Lu D, Zhang L M, et al. Widely tunable amplified feedback laser with beating-frequency covering 60-GHz band. IEEE Photonic Technol Lett, 2015, 27: 2103–2106

    Article  Google Scholar 

  52. 52

    Pan B W, Yu L Q, Lu D, et al. Simulation and experimental characterization of a dual-mode two-section amplified feedback laser with mode separation over 100 GHz. Chinese Opt Lett, 2014, 12: 110605–110609

    Article  Google Scholar 

  53. 53

    Pan B W, Guo L, Zhang L M, et al. Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery. Appl Opt, 2016, 55: 2930–2935

    Article  Google Scholar 

  54. 54

    Sun Y, Pan J Q, Zhao L J, et al. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser. J Lightwave Technol, 2010, 28: 2521–2525

    Article  Google Scholar 

  55. 55

    Wang L, Zhao X F, Lou C Y, et al. 40 Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser. Appl Opt, 2010, 49: 6577–6581

    Article  Google Scholar 

  56. 56

    Qiu J F, Chen C, Zhao L J, et al. Detailed analysis of a 40 GHz all-optical synchronization based on an amplifiedfeedback distributed feedback laser. Appl Opt, 2012, 51: 2894–2901

    Article  Google Scholar 

  57. 57

    Pan B W, Yu L Q, Guo L, et al. 100 Gb/s all-optical clock recovery based on a monolithic dual-mode DBR laser. Chin Opt Lett, 2016, 14: 030604–030607

    Article  Google Scholar 

  58. 58

    Pan B W, Lu D, Sun Y, et al. Tunable optical microwave generation using self-injection locked monolithic dualwavelength amplified feedback laser. Opt Lett, 2014, 39: 6395–6398

    Article  Google Scholar 

  59. 59

    Lu D, Pan B W, Chen H B, et al. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter. Opt Lett, 2015, 40: 4340–4343

    Article  Google Scholar 

  60. 60

    Pan B W, Lu D, Zhang L M, et al. A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser. IEEE Photonic J, 2015, 7: 1–7

    Google Scholar 

  61. 61

    Guo L, Zhang R K, Lu D, et al. Linearly chirped microwave generation using a monolithic integrated amplified feedback laser. IEEE Photonic Technol Lett, 2017, 29: 1915–1918

    Article  Google Scholar 

  62. 62

    Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Opt Express, 2013, 21: 23358–23364

    Article  Google Scholar 

  63. 63

    Pan B W, Lu D, Zhao L J. Broadband chaos generation using monolithic dual-mode laser with optical feedback. IEEE Photonic Technol Lett, 2015, 27: 2516–2519

    Article  Google Scholar 

  64. 64

    Zhang L M, Pan B W, Chen G C, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser. Appl Opt, 2017, 56: 1253–1256

    Article  Google Scholar 

  65. 65

    Zhang L M, Pan B W, Chen G C, et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci Rep, 2017, 8: 45900

    Article  Google Scholar 

  66. 66

    Li Z S, Lu D, He Y M, et al. InP-based directly modulated monolithic integrated few-mode transmitter. Photonic Res, 2018, 6: 463–467

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 61635010, 61474112, 61574137, 61320106013, 61335009, 61321063, 61674134, 61274071), National Key Research and Development Program of China (Grant No. 2016YFB0402301), National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA014502), and National Basic Research Program of China (973 Program) (Grant No. 2014CB340102).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Song Liang or Lingjuan Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Lu, D., Zhao, L. et al. Fabrication of InP-based monolithically integrated laser transmitters. Sci. China Inf. Sci. 61, 080405 (2018). https://doi.org/10.1007/s11432-018-9478-1

Download citation

Keywords

  • photonic integration
  • EMLs
  • multi-wavelength DFB laser arrays
  • widely tunable DBR lasers
  • integrated AFL
  • few-mode transmitters