Skip to main content
Log in

Matrix expression of Shapley values and its application to distributed resource allocation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The symmetric and weighted Shapley values for cooperative n-person games are studied. Using the semi-tensor product of matrices, it is first shown that a characteristic function can be expressed as a pseudo-Boolean function. Then, two simple matrix formulas are obtained for calculating the symmetric and weighted Shapley values. Finally, using these new formulas, a design technique for the agents’ payoff functions in distributed resource allocation problems is proposed. It is possible to design payoff functions with the weighted Shapley value by the nonsymmetric weights defined on the players, thus ensuring that the optimal allocation is a pure Nash equilibrium. Practical examples are presented to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mei S W, Wang Y Y, Liu F, et al. Game approaches for hybrid power system planning. IEEE Trans Sustain Energ, 2012, 3: 506–517

    Article  Google Scholar 

  2. Zhu M H, Martínez S. Distributed coverage games for energy-aware mobile sensor networks. SIAM J Control Optim, 2013, 51: 1–27

    Article  MathSciNet  Google Scholar 

  3. Gopalakrishnan R, Marden J R, Wierman A. An architectural view of game theoretic control. SIGMETRICS Perform Eval Rev, 2011, 38: 31–36

    Article  Google Scholar 

  4. Marden J R, Wierman A. Distributed welfare games. Oper Res, 2013, 61: 155–168

    Article  MathSciNet  Google Scholar 

  5. Shapley L S. A value for n-person games. Contrib Theory Games, 1953, 2: 307–317

    MathSciNet  MATH  Google Scholar 

  6. Pérez-Castrillo D, Wettstein D. Bidding for the surplus: a non-cooperative approach to the Shapley value. J Econ Theory, 2001, 100: 274–294

    Article  MathSciNet  Google Scholar 

  7. Shapley L S. Additive and non-additioe set functions. Dissertation for Ph.D. Degree. Princeton: Princeton University, 1953

    Google Scholar 

  8. Kalai E, Samet D. On weighted Shapley values. Int J Game Theory, 1987, 16: 205–222

    Article  MathSciNet  Google Scholar 

  9. Chun Y. On the symmetric and weighted shapley values. Int J Game Theory, 1991, 20: 183–190

    Article  MathSciNet  Google Scholar 

  10. Nowak A S, Radzik T. On axiomatizations of the weighted Shapley values. Games Econ Behav, 1995, 8: 389–405

    Article  MathSciNet  Google Scholar 

  11. Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. Berlin: Springer, 2011

    Book  Google Scholar 

  12. Li F F, Sun J T. Stability and stabilization of Boolean networks with impulsive effects. Syst Control Lett, 2012, 61: 1–5

    Article  MathSciNet  Google Scholar 

  13. Li H T, Zhao G D, Meng M, et al. A survey on applications of semi-tensor product method in engineering. Sci China Inf Sci, 2018, 61: 010202

    Article  MathSciNet  Google Scholar 

  14. Meng M, Liu L, Feng G. Stability and l1 gain analysis of Boolean networks with Markovian jump parameters. IEEE Trans Autom Control, 2017, 62: 4222–4228

    Article  Google Scholar 

  15. Lu J Q, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE Trans Autom Control, 2016, 61: 1658–1663

    Article  MathSciNet  Google Scholar 

  16. Zhao G D, Fu S H. Matrix approach to trajectory control of higher-order k-valued logical control networks. IET Control Theory Appl, 2017, 11: 2110–2115

    Article  MathSciNet  Google Scholar 

  17. Liu Z B, Wang Y Z, Li H T. Two kinds of optimal controls for probabilistic mix-valued logical dynamic networks. Sci China Inf Sci, 2014, 57: 052201

    MathSciNet  MATH  Google Scholar 

  18. Zheng Y T, Li H T, Ding X Y, et al. Stabilization and set stabilization of delayed Boolean control networks based on trajectory stabilization. J Franklin Inst, 2017, 354: 7812–7827

    Article  MathSciNet  Google Scholar 

  19. Wang Y Z, Zhang C H, Liu Z B. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems. Automatica, 2012, 48: 1227–1236

    Article  MathSciNet  Google Scholar 

  20. Zhong J, Lu J Q, Huang C, et al. Finding graph minimum stable set and core via semi-tensor product approach. Neurocomputing, 2016, 174: 588–596

    Article  Google Scholar 

  21. Zhao J T, Chen Z Q, Liu Z X. Modeling and analysis of colored petri net based on the semi-tensor product of matrices. Sci China Inf Sci, 2018, 61: 010205

    Article  MathSciNet  Google Scholar 

  22. Cheng D Z, Xu T T. Application of STP to cooperative games. In: Proceedings of 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, 2013. 1680–1685

    Google Scholar 

  23. Cheng D Z. On finite potential games. Automatica, 2014, 50: 1793–1801

    Article  MathSciNet  Google Scholar 

  24. Wang Y H, Liu T, Cheng D Z. From weighted potential game to weighted harmonic game. IET Control Theory Appl, 2017, 11: 2161–2169

    Article  MathSciNet  Google Scholar 

  25. Cheng D Z, He F H, Qi H S, et al. Modeling, analysis and control of networked evolutionary games. IEEE Trans Autom Control, 2015, 60: 2402–2415

    Article  MathSciNet  Google Scholar 

  26. Wang Y H, Cheng D Z. Dynamics and stability for a class of evolutionary games with time delays in strategies. Sci China Inf Sci, 2016, 59: 092209

    Article  Google Scholar 

  27. Guo P L, Zhang H X, Alsaadi F E, et al. Semi-tensor product method to a class of event-triggered control for finite evolutionary networked games. IET Control Theory Appl, 2017, 11: 2140–2145

    Article  MathSciNet  Google Scholar 

  28. Branzei R, Dimitrov D, Tijs S. Models in Cooperative Game Theory. Berlin: Springer, 2008

    MATH  Google Scholar 

  29. Sedgewick R. Permutation generation methods. ACM Comput Surv, 1977, 9: 137–164

    Article  MathSciNet  Google Scholar 

  30. Rosen K H, Michaels J G, et al. Handbook of Discrete and Combinatorial Mathematics. Boca Raton: CRC Press, 1999

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61773371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, D. & Liu, X. Matrix expression of Shapley values and its application to distributed resource allocation. Sci. China Inf. Sci. 62, 22201 (2019). https://doi.org/10.1007/s11432-018-9414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-018-9414-5

Keywords

Navigation