Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Flexible ultra-wideband rectangle monopole antenna with O-slot insertion design

  • 82 Accesses

  • 1 Citations

Abstract

Slot insertion design has proven to be an effective method to increase the bandwidth in the design of microstrip antenna. In this paper, the slot insertion design is applied to the flexible ultra-wideband (UWB) antenna. A flexible rectangular UWB monopole antenna is proposed and fabricated with O-slot design using the transfer printing method. By simulating the influence of O-slot design parameters on electromagnetic performance of the antenna, an optimized antenna design is obtained to keep the reflection coefficient under −10 dB with the frequencies ranging from 3.5 to 17.8 GHz when the antenna is bent with curvature radius as small as 11 mm. The effect of bending on the reflection coefficient is analyzed. Mechanical simulations indicate that the existence of O-slot can reduce the strain concentration on the metal layer of antenna, which enhances the flexibility of the antenna.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Lacour S P, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater, 2016, 1: 16063

  2. 2

    Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333: 838–843

  3. 3

    Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotech, 2014, 9: 397–404

  4. 4

    Jeong J W, Yeo W H, Akhtar A, et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv Mater, 2013, 25: 6839–6846

  5. 5

    Yeo W H, Kim Y S, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater, 2013, 25: 2773–2778

  6. 6

    Miller L E. Why UWB? A Review of Ultrawideband Technology. Gaithersburg: National Institute of Standards and Technology, 2003. 1–72

  7. 7

    Liang J X, Chiau C C, Chen X D, et al. Study of a printed circular disc monopole antenna for UWB systems. IEEE Trans Antenn Propagat, 2005, 53: 3500–3504

  8. 8

    Choi S H, Park J K, Kim S K, et al. A new ultra-wideband antenna for UWB applications. Microw Opt Technol Lett, 2004, 40: 399–401

  9. 9

    Vendik I B, Rusakov A, Kanjanasit K, et al. Ultrawideband (UWB) planar antenna with single-, dual-, and triple-band notched characteristic based on electric ring resonator. Antenn Wirel Propag Lett, 2017, 16: 1597–1600

  10. 10

    Bhalla R, Shafai L. Broadband patch antenna with a circular arc shaped slot. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, San Antonio, 2002. 394–397

  11. 11

    Deshmukh A, Ray K. Analysis of broadband variations of U-slot cut rectangular microstrip antennas. IEEE Antenn Propag Mag, 2015, 57: 181–193

  12. 12

    Lee K F, Yang S L S, Kishk A A, et al. The versatile U-slot patch antenna. IEEE Antenn Propag Mag, 2010, 52: 71–88

  13. 13

    Lee K F, Yang S L S, Kishk A A. Dual-and multiband U-slot patch antennas. Antenn Wirel Propag Lett, 2008, 7: 645–647

  14. 14

    Weigand S, Huff G H, Pan K H, et al. Analysis and design of broad-band single-layer rectangular u-slot microstrip patch antennas. IEEE Trans Antenn Propagat, 2003, 51: 457–468

  15. 15

    Yeboah-Akowuah B, Kallos E, Palikaras G, et al. A novel compact planar inverted-F antenna for biomedical applications in the MICS band. In: Proceedings of IEEE European Conference on Antennas and Propagation, The Hague, 2014. 822–824

  16. 16

    Khaleel H R, Al-Rizzo H M, Rucker D G, et al. A compact polyimide-based UWB antenna for flexible electronics. Antenn Wirel Propag Lett, 2012, 11: 564–567

  17. 17

    Agneessens S, Rogier H. Compact half diamond dual-band textile HMSIW on-body antenna. IEEE Trans Antenn Propagat, 2014, 62: 2374–2381

  18. 18

    Agneessens S, Lemey S, Vervust T, et al. Wearable, small, and robust: the circular quarter-mode textile antenna. Antenn Wirel Propag Lett, 2015, 14: 1482–1485

  19. 19

    Yan S, Soh P J, Vandenbosch G A E. Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology. IEEE Trans Antenn Propagat, 2015, 63: 4640–4647

  20. 20

    Soh P J, Vandenbosch G A E, Ooi S L, et al. Design of a Broadband All-Textile Slotted PIFA. IEEE Trans Antenn Propagat, 2012, 60: 379–384

  21. 21

    El Hajj W, Person C, Wiart J. A novel investigation of a broadband integrated inverted-F antenna design; application for wearable antenna. IEEE Trans Antenn Propagat, 2014, 62: 3843–3846

  22. 22

    Wang Z, Lee L Z, Psychoudakis D, et al. Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications. IEEE Trans Antenn Propagat, 2014, 62: 3321–3329

  23. 23

    Zhu S, Langley R. Dual-band wearable textile antenna on an EBG substrate. IEEE Trans Antenn Propagat, 2009, 57: 926–935

  24. 24

    Raad H R, Abbosh A I, Al-Rizzo H M, et al. Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans Antenn Propagat, 2013, 61: 524–531

  25. 25

    Yan S, Soh P J, Vandenbosch G A E. Low-profile dual-band textile antenna with artificial magnetic conductor plane. IEEE Trans Antenn Propagat, 2014, 62: 6487–6490

  26. 26

    Lui K W, Murphy O H, Toumazou C. A wearable wideband circularly polarized textile antenna for effective power transmission on a wirelessly-powered sensor platform. IEEE Trans Antenn Propagat, 2013, 61: 3873–3876

  27. 27

    Hertleer C, Rogier H, Vallozzi L, et al. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antenn Propagat, 2009, 57: 919–925

  28. 28

    Locher I, Klemm M, Kirstein T, et al. Design and characterization of purely textile patch antennas. IEEE Trans Adv Packag, 2006, 29: 777–788

  29. 29

    Yan Z, Pan T, Yao G, et al. Highly stretchable and shape-controllable three-dimensional antenna fabricated by “Cut-Transfer-Release” method. Sci Rep, 2017, 7: 42227

  30. 30

    Zhang Y, Wang S, Li X, et al. Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv Funct Mater, 2014, 24: 2028–2037

  31. 31

    Fan J A, Yeo W H, Su Y, et al. Fractal design concepts for stretchable electronics. Nature Commun, 2014, 5: 3266

  32. 32

    Jang K I, Li K, Chung H U, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun, 2017, 8: 15894

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973) (Grant No. 2015CB351905), Technology Innovative Research Team of Sichuan Province of China (Grant No. 2015TD0005), and 111 project (Grant No. B13042).

Author information

Correspondence to Taisong Pan or Yuan Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Pan, T., Yan, Z. et al. Flexible ultra-wideband rectangle monopole antenna with O-slot insertion design. Sci. China Inf. Sci. 61, 060414 (2018). https://doi.org/10.1007/s11432-018-9396-7

Download citation

Keywords

  • slot insertion
  • rectangular monopole antenna
  • ultra-wideband
  • flexibility
  • transfer printing