Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photonic integration technologies for indoor optical wireless communications

  • 116 Accesses

  • 2 Citations


Indoor optical wireless communication (OWC) using steerable infrared beams is regarded as an important component in future 5G network. Photonic integration technologies can meet the criteria of such application, and provide low-cost, high-performance and very compact chips. In this paper, we review the recent development of photonic integration technologies suitable for indoor OWC application, and discuss in detail the current status and future opportunities of several key devices, such as the chip to free space couplers, integrated receivers and transmitters.

This is a preview of subscription content, log in to check access.


  1. 1

    Ejaz W, Anpalagan A, Imran M A, et al. Internet of things (IoT) in 5G wireless communications. IEEE Access, 2016, 4: 10310–10314

  2. 2

    Li Q C, Niu H, Papathanassiou A T, et al. 5G network capacity: key elements and technologies. IEEE Veh Technol Mag, 2014, 9: 71–78

  3. 3

    Koonen A M J, Tangdiongga E. Photonic home area networks. J Lightw Technol, 2014, 32: 591–604

  4. 4

    Li X, Lu R, Liang X, et al. Smart community: an internet of things application. IEEE Commun Mag, 2011, 49: 68–75

  5. 5

    Islam S M R, Kwak D, Kabir M H, et al. The internet of things for health care: a comprehensive survey. IEEE Access, 2015, 3: 678–708

  6. 6

    Boccardi F, Heath R W, Lozano A, et al. Five disruptive technology directions for 5G. IEEE Commun Mag, 2014, 52: 74–80

  7. 7

    Koonen T, Oh J, Mekonnen K, et al. Ultra-high capacity indoor optical wireless communication using 2D-steered pencil beams. J Lightw Technol, 2016, 34: 4802–4809

  8. 8

    Jungnickel V, Schulz D, Hilt J, et al. Optical wireless communication for backhaul and access. In: Proceedings of 2015 European Conference on Optical Communication (ECOC), Valencia, 2015. 0643

  9. 9

    O’Brien D, Turnbull R, Le Minh H, et al. High-speed optical wireless demonstrators: conclusions and future directions. J Lightw Technol, 2012, 30: 2181–2187

  10. 10

    Haas H. Visible light communication. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2015. Tu2G.5

  11. 11

    Cao Z, Jiao Y, Shen L, et al. Ultrahigh throughput indoor infrared wireless communication system enabled by a cascaded aperture optical receiver fabricated on InP membrane. J Lightw Technol, 2018, 36: 57–67

  12. 12

    Summers J, Vallaitis T, Evans P, et al. 40 Channels × 57 Gb/s monolithically integrated InP-based coherent photonic transmitter. In: Proceedings of 2014 European Conference on Optical Communication (ECOC), Cannes, 2014. 1–3

  13. 13

    Smit M, Leijtens X, Ambrosius H, et al. An introduction to InP-based generic integration technology. Semicond Sci Technol, 2014, 29: 083001

  14. 14

    Roelkens G, Abassi A, Cardile P, et al. III-V-on-silicon photonic devices for optical communication and sensing. Photonics, 2015, 2: 969–1004

  15. 15

    Coldren L A, Nicholes S C, Johansson L, et al. High performance InP-based photonic ICs-A tutorial. J Lightw Technol, 2011, 29: 554–570

  16. 16

    Williams K A, Bente E A J M, Heiss D, et al. InP photonic circuits using generic integration. Photon Res, 2015, 3: B60

  17. 17

    Smit M, Leijtens X, Bente E, et al. Generic foundry model for InP-based photonics. IET Optoelectron, 2011, 5: 187–194

  18. 18

    Bogaerts W, Baets R, Dumon P, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightw Technol, 2005, 23: 401–412

  19. 19

    Roelkens G, van Campenhout J, Brouckaert J, et al. III-V/Si photonics by die-to-wafer bonding. Mater Today, 2007, 10: 36–43

  20. 20

    Liang D, Roelkens G, Baets R, et al. Hybrid Integrated Platforms for Silicon Photonics. Materials, 2010, 3: 1782–1802

  21. 21

    Luo X, Cheng Y, Song J, et al. Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application. IEEE J Sel Top Quantum Electron, 2016, 22: 443–454

  22. 22

    Keyvaninia S, Verstuyft S, van Landschoot L, et al. Heterogeneously integrated III-V/silicon distributed feedback lasers. Opt Lett, 2013, 38: 5434–5437

  23. 23

    van der Tol J J G M, Jiao Y, Shen L, et al. Indium phosphide integrated photonics in membranes. IEEE J Sel Topics Quant Electron, 2018, 24: 6100809

  24. 24

    Inoue D, Hiratani T, Fukuda K, et al. Integrated optical link on si substrate using membrane distributed-feedback laser and p-i-n photodiode. IEEE J Sel Topics Quant Electron, 2017, 23: 3700208

  25. 25

    Matsuo S, Fujii T, Hasebe K, et al. Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Opt Express, 2014, 22: 12139–12147

  26. 26

    Shen L, Jiao Y, Rodriguez A H, et al. Double-sided processing for membrane-based photonic integration. In: Proceedings of the 18th European Conference on Integrated Optics (ECIO 2016), Warsaw, 2016. 1–2

  27. 27

    Pogoretskiy V, van Engelen J, van der Tol J, et al. An integrated SOA-building block for an InP-membrane platform. In: Proceedings of Integrated Photonics Research, Silicon and Nanophotonics, New Orleans, 2017. JW4A.1

  28. 28

    Guo WH, Binetti P R A, Althouse C, et al. Two-dimensional optical beam steering with InP-based photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2013, 19: 6100212

  29. 29

    Song W, Gatdula R, Abbaslou S, et al. High-density waveguide superlattices with low crosstalk. Nat Commun, 2015, 6: 7027

  30. 30

    Jie S, Timurdogan E, Yaacobi A, et al. Large-scale silicon photonic circuits for optical phased arrays. IEEE J Sel Top Quantum Electron, 2014, 20: 264–278

  31. 31

    van Laere F, Roelkens G, Ayre M, et al. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J Lightw Technol, 2007, 25: 151–156

  32. 32

    Wang Y, Wang X, Flueckiger J, et al. Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. Opt Express, 2014, 22: 20652–20662

  33. 33

    Millan-Mejia A J, Jiao Y, van der Tol J J G M, et al. Design of an optical nanoantenna with focusing sub-wavelength grating couplers and metallic reflector. In: Prcoeedings of the 24th Optical Wave And Waveguide Theory And Numerical Modelling Workshop (OWTNM 2016), Warsaw, 2016. 1

  34. 34

    Taillaert D, Bogaerts W, Bienstman P, et al. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J Quantum Electron, 2002, 38: 949–955

  35. 35

    Jiao Y, Pello J, Mejia A M, et al. Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices. Opt Lett, 2014, 39: 1645–1648

  36. 36

    Higuera-Rodriguez A, Dolores-Calzadilla V, Jiao Y, et al. Realization of efficient metal grating couplers for membranebased integrated photonics. Opt Lett, 2015, 40: 2755–2757

  37. 37

    van Laere F, Stomeo T, Taillaert D, et al. Efficient polarization diversity grating couplers in bonded InP-membrane. IEEE Photon Technol Lett, 2008, 20: 318–320

  38. 38

    Streshinsky M, Shi R, Novack A, et al. A compact bi-wavelength polarization splitting grating coupler fabricated in a 220 nm SOI platform. Opt Express, 2013, 21: 31019–31028

  39. 39

    Heismann F, Smith R W. High-speed polarization scrambler with adjustable phase chirp. IEEE J Sel Top Quantum Electron, 1996, 2: 311–318

  40. 40

    Yang R, Wang W. Out-of-plane polymer refractive microlens fabricated based on direct lithography of SU-8. Senss Actuators A-Phys, 2004, 113: 71–77

  41. 41

    Kuo J N, Hsieh C C, Yang S Y, et al. An SU-8 microlens array fabricated by soft replica molding for cell counting applications. J Micromech Microeng, 2007, 17: 693–699

  42. 42

    Chang L, Dijkstra M, Ismail N, et al. Waveguide-coupled micro-ball lens array suitable for mass fabrication. Opt Express, 2015, 23: 22414–22423

  43. 43

    O’Brien D C, Faulkner G E, Zyambo E B, et al. Integrated transceivers for optical wireless communications. IEEE J Sel Top Quantum Electron, 2005, 11: 173–183

  44. 44

    Le Minh H, O’Brien D, Faulkner G, et al. A 1.25-Gb/s indoor cellular optical wireless communications demonstrator. IEEE Photon Technol Lett, 2010, 22: 1598–1600

  45. 45

    Cossu G, Khalid A M, Choudhury P, et al. 34 Gbit/s visible optical wireless transmission based on RGB LED. Opt Express, 2012, 20: B501

  46. 46

    Cao Z, Jiao Y, Shen L, et al. Optical wireless data transfer enabled by a cascaded acceptance optical receiver fabricated in an InP membrane platform. In: Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, 2016. M2B.3

  47. 47

    Cao Z, Shen L, Jiao Y, et al. 200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2017. Th5A.6

  48. 48

    Shen L, Jiao Y, Yao W, et al. High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membraneon-silicon platform. Opt Express, 2016, 24: 8290–8301

  49. 49

    Chen H, Galili M, Verheyen P, et al. 100 Gbps RZ data reception in 67 GHz si-contacted germanium waveguide p-i-n photodetectors. J Lightw Technol, 2016, 35: 722–726

  50. 50

    Xie X, Zhou Q, Norberg E, et al. Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12 dBm output power at 40 GHz. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2015. Th5B.7

  51. 51

    Lee S S, Lin L Y, Pister K S J, et al. Passively aligned hybrid integration of 8×1 micromachined micro-Fresnel lens arrays and 8×1 vertical-cavity surface-emitting laser arrays for free-space optical interconnect. IEEE Photon Technol Lett, 1995, 7: 1031–1033

  52. 52

    Strzelecka E M, Louderback D A, Thibeault B J, et al. Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses. Appl Opt, 1998, 37: 2811–2821

  53. 53

    Tuantranont A, Bright V M, Zhang J, et al. Optical beam steering using MEMS-controllable microlens array. Senss Actuators A-Phys, 2001, 91: 363–372

  54. 54

    Tilma B W, Jiao Y, van Veldhoven P J, et al. InP-based monolithically integrated tunable wavelength filters in the 1.6-1.8 μm wavelength region for tunable laser purposes. J Lightw Technol, 2011, 29: 2818–2830

  55. 55

    Latkowski S, Hansel A, Bhattacharya N, et al. Novel widely tunable monolithically integrated laser source. IEEE Photonics J, 2015, 7: 1–9

  56. 56

    Komljenovic T, Bowers J E. Monolithically integrated high-Q rings for narrow linewidth widely tunable lasers. IEEE J Quant Electron, 2015, 51: 1–10

  57. 57

    Tilma B W, Jiao Y, Kotani J, et al. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 mum wavelength region. IEEE J Quant Electron, 2012, 48: 87–98

  58. 58

    Jiao Y. Towards a monolithically integrated swept-source optical coherence tomography system in the 1.7 μm wavelength region. Dissertation for Ph.D. Degree. Eindhoven: Eindhoven University of Technology, 2013

  59. 59

    Moskalenko V, Koelemeij J, Williams K, et al. Study of extra wide coherent optical combs generated by a QW-based integrated passively mode-locked ring laser. Opt Lett, 2017, 42: 1428–1431

  60. 60

    Doylend J K, Heck M J R, Bovington J T, et al. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt Express, 2011, 19: 21595–21604

  61. 61

    Hulme J C, Doylend J K, Heck M J R, et al. Fully integrated hybrid silicon free-space beam steering source with 32-channel phased array. In: Proceedings of the International Society for Optics and Photonics (SPIE), Washington, 2014. 898907

  62. 62

    Hutchison D N, Sun J, Doylend J K, et al. High-resolution aliasing-free optical beam steering. Optica, 2016, 3: 887–890

  63. 63

    Abediasl H, Hashemi H. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt Express, 2015, 23: 6509–6519

  64. 64

    Heck M J R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics, 2017, 6: 93–107

  65. 65

    Vinchant J F, Cavailles J A, Erman M, et al. InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment. J Lightw Technol, 1992, 10: 63–70

  66. 66

    Liu K, Ye C R, Khan S, et al. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev, 2015, 9: 172–194

  67. 67

    W¨ulbern J H, Prorok S, Hampe J, et al. 40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides. Opt Lett, 2010, 35: 2753–2755

  68. 68

    Palmer R, Alloatti L, Korn D, et al. Silicon-organic hybrid MZI modulator generating OOK, BPSK and 8-ASK signals for up to 84 Gbit/s. IEEE Photonics J, 2013, 5: 6600907

  69. 69

    Pruessner M W, Stievater T H, Ferraro M S, et al. Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. Opt Express, 2007, 15: 7557–7563

  70. 70

    Sun P, Reano R M. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt Express, 2010, 18: 8406

  71. 71

    Gilardi G, Yao W M, Haghighi H R, et al. Deep trenches for thermal crosstalk reduction in InP-based photonic integrated circuits. J Lightw Technol, 2014, 32: 4864–4870

  72. 72

    Jiao Y, Cao Z, Shen L, et al. Membrane-based receiver/transmitter for reconfigurable optical wireless beam-steering systems. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6

  73. 73

    Cao Z, Ma Q, Smolders A B, et al. Advanced integration techniques on broadband millimeter-wave beam steering for 5G wireless networks and beyond. IEEE J Quantum Electron, 2016, 52: 1–20

  74. 74

    Sun C, Wade M T, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature, 2015, 528: 534–538

Download references


This work was supported by Netherlands Organization for Scientific Research (NWO) Gravitation Project Integrated Nanophotonics, and European Research Council (ERC) Advanced Grant Projects NOLIMITS (Grant No. 291439) and BROWSE (Grant No. 291632).

Author information

Correspondence to Yuqing Jiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Cao, Z. Photonic integration technologies for indoor optical wireless communications. Sci. China Inf. Sci. 61, 080404 (2018). https://doi.org/10.1007/s11432-018-9391-1

Download citation


  • photonic integration
  • indium phosphide (InP)
  • silicon
  • 5G
  • optical wireless communication (OWC)