Advertisement

Network protocol architectures for future deep-space internetworking

  • Kanglian Zhao
  • Qinyu Zhang
Review
  • 98 Downloads

Abstract

In the next two decades, humans are going to experience a grand age of deep-space exploration, especially in Mars and Lunar spaces. These relatively frequent and long-term activities provide the opportunity, and at the same time, demands the necessity for a true interplanetary network as an essential infrastructure for future deep-space exploration. In this study, we try to provide a picture and a perspective in the current network protocol architectures for future deep-space internetworking. We first investigate the recent technical advances for deep-space internetworking and the challenges to their network protocol architecture. Detailed technical characteristics of three effective network protocol architectures are presented. A special focus is casted on delay tolerant networking (DTN), which is a dedicated network protocol architecture for deep-space internetworking. Finally, several open questions in DTN for future deep-space internetworking are proposed for further study.

Keywords

network protocol architecture deep-space internetworking deep-space communications space internetworking delay-tolerant networking 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61032003), Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91338112), and National Science Fund for Distinguished Young Scholars (Grant No. 1525103).

References

  1. 1.
    International Telecommunication Union. ITU-R Radio Regulations, Article 1, Terms and definitions, Section VIII, Technical terms relating to space, paragraph 1.177. http://life.itu.int/radioclub/rr/art1.pdfGoogle Scholar
  2. 2.
    Ning X, Li Z, Wu W, et al. Recursive adaptive filter using current innovation for celestial navigation during the Mars approach phase. Sci China Inf Sci, 2017, 60: 032205CrossRefGoogle Scholar
  3. 3.
    Burleigh S, Cerf V G, Crowcroft J, et al. Space for Internet and Internet for space. Ad Hoc Networks, 2014, 23: 80–86CrossRefGoogle Scholar
  4. 4.
    de Cola T, Paolini E, Liva G, et al. Reliability options for data communications in the future deep-space missions. Proc IEEE, 2011, 99: 2056–2074CrossRefGoogle Scholar
  5. 5.
    Wang R, Taleb T, Jamalipour A, et al. Protocols for reliable data transport in space Internet. IEEE Commun Surv Tutorials, 2009, 11: 21–32CrossRefGoogle Scholar
  6. 6.
    Vasilakos A, Zhang Y, Spyropoulos T V. Delay Tolerant Networks: Protocols and Applications. Boca Raton: CRC Press, 2016. 288–313Google Scholar
  7. 7.
    Zhang W R, Yang G N, Jiang F, et al. Licklider transmission protocol for GEO-relayed space internetworking. Wirel Netw, 2018, 1–11Google Scholar
  8. 8.
    Farrell S, Cahill V, Geraghty D, et al. When TCP breaks: delay-and disruption-tolerant networking. IEEE Internet Comput, 2006, 10: 72–78CrossRefGoogle Scholar
  9. 9.
    Hooke A J. The interplanetary Internet. In: Proceedings of the 3rd Annual Symposium on Advanced Radio Technologies, Colorado, 2000. 1Google Scholar
  10. 10.
    Akyildiz I F, Akan B, Chen C, et al. InterPlaNetary Internet: state-of-the-art and research challenges. Comput Netw, 2003, 43: 75–112CrossRefzbMATHGoogle Scholar
  11. 11.
    Akan O B, Fang J, Akyildiz I F. TP-Planet: a reliable transport protocol for interplanetary Internet. IEEE J Sel Areas Commun, 2004, 22: 348–361CrossRefGoogle Scholar
  12. 12.
    Burleigh S, Hooke A, Torgerson L, et al. Delay-tolerant networking: an approach to interplanetary internet. IEEE Commun Mag, 2003, 41: 128–136CrossRefGoogle Scholar
  13. 13.
    Burleigh S, Cerf V, Durst R, et al. The interplanetary Internet: a communications infrastructure for Mars exploration. Acta Astronaut, 2003, 53: 365–373CrossRefGoogle Scholar
  14. 14.
    Bozzi M, Cametti M, Fornaroli M, et al. Future architectures for European space agency deep-space ground stations [antenna applications corner]. IEEE Antennas Propag Mag, 2012, 54: 254–263CrossRefGoogle Scholar
  15. 15.
    National Aeronautics and Space Administration. SCaN 101. https://www.nasa.gov/sites/default/files/files/ SCaN 101 2013.pdfGoogle Scholar
  16. 16.
    Bagri D S, Statman J I, Gatti M S. Proposed array-based deep space network for NASA. Proc IEEE, 2007, 95: 1916–1922CrossRefGoogle Scholar
  17. 17.
    Hemmati H. Deep Space Optical Communications. Hoboken: John Wiley & Sons, Inc., 2006. 1–82Google Scholar
  18. 18.
    Wu W, Chen M, Zhang Z, et al. Overview of deep space laser communication. Sci China Inf Sci, 2018, 61: 040301MathSciNetCrossRefGoogle Scholar
  19. 19.
    Consultative Committee for Space Data Systems. Real-time weather and atmospheric characterization data. CCSDS 140.1-G-1. 2017. https://public.ccsds.org/Pubs/140x1g1.pdfGoogle Scholar
  20. 20.
    NASA space communication and navigation program next generation space relay architecture concept study. Space relay architecture background information. NNC16ZLC002L. 2016. https://elibrary.gsfc.nasa.gov/ assets/doclibBidder/ tech docs/NASAGoogle Scholar
  21. 21.
    Munger J, Ladrach W, Hetrick J. The next generation space relay architectures. In: Proceedings of the 34th AIAA International Communications Satellite Systems Conference, Cleveland, 2016. 1–18Google Scholar
  22. 22.
    Reinhart R C, Schier J S, Israel D J, et al. Enabling future science and human exploration with NASA’s next generation near earth and deep space communications and navigation architecture. In: Proceedings of International Astronautical Congress, Adelaid, 2017. 1–10Google Scholar
  23. 23.
    Rosborough V, Gambini F, Snyder J, et al. Integrated transmitter for deep space optical communications. In: Proceedings of 2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference, Long Beach, 2016. 207–208CrossRefGoogle Scholar
  24. 24.
    Brooks D E, Eddy W, Johnson S K, et al. In-space networking on NASA’s SCaN testbed. In: Proceedings of the 34th AIAA International Communications Satellite Systems Conference, Cleveland, 2016. 1–9Google Scholar
  25. 25.
    Brandon C, Chapin P. The use of SPARK in a complex spacecraft. ACM SIGAda Ada Lett, 2016, 36: 18–21CrossRefGoogle Scholar
  26. 26.
    Sabbagh A, Wang R, Zhao K, et al. Bundle protocol over highly asymmetric deep-space channels. IEEE Trans Wirel Commun, 2016, 16: 2478–2489CrossRefGoogle Scholar
  27. 27.
    Farrell S, Cahill V. Security considerations in space and delay tolerant networks. In: Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information Technology, Pasadena, 2016. 1–8Google Scholar
  28. 28.
    Cath C, Floridi L. The design of the Internet’s architecture by the Internet engineering task force (IETF) and human rights. Sci Eng Ethics, 2017, 23: 449–468CrossRefGoogle Scholar
  29. 29.
    Mukherjee J, Ramamurthy B. Communication technologies and architectures for space network and interplanetary Internet. IEEE Commun Surv Tutorials, 2013, 15: 881–897CrossRefGoogle Scholar
  30. 30.
    Akyildiz I F, Akan O B, Chen C, et al. The state of the art in interplanetary Internet. IEEE Commun Mag, 2004, 42: 108–118CrossRefGoogle Scholar
  31. 31.
    Consultative Committee for Space Data Systems. Space packet protocol. CCSDS 133.0-B-1. 2003. https://public. ccsds.org/Pubs/133x0b1c2.pdfGoogle Scholar
  32. 32.
    Consultative Committee for Space Data Systems. Space Communications Protocol Specification (SCPS)-Transport Protocol. CCSDS 714.0-B-2. 2006. https://public.ccsds.org/pubs/714x0b2.pdfGoogle Scholar
  33. 33.
    Consultative Committee for Space Data Systems. IP over CCSDS Space Links. CCSDS 702.1-B-1. 2012. https:// public.ccsds.org/Pubs/702x1b1c1 tc1413.pdfGoogle Scholar
  34. 34.
    Consultative Committee for Space Data Systems. Encapsulation Service. CCSDS 133.1-B-2. 2009. https://public. ccsds.org/Pubs/133x1b2c2.pdfGoogle Scholar
  35. 35.
    Consultative Committee for Space Data Systems. TC Space Data Link Protocol. CCSDS 232.0-B-2. 2010. https:// public.ccsds.org/Pubs/232x0b3.pdfGoogle Scholar
  36. 36.
    Consultative Committee for Space Data Systems. TM Space Data Link Protocol. CCSDS 132.0-B-1. 2003. https:// public.ccsds.org/Pubs/132x0b2.pdfGoogle Scholar
  37. 37.
    Consultative Committee for Space Data Systems. AOS Space Data Link Protocol. CCSDS 732.0-B-2. 2006. https:// public.ccsds.org/Pubs/732x0b2c1s tc1230.pdfGoogle Scholar
  38. 38.
    Consultative Committee for Space Data Systems. Proximity-1 Space Link Protocol-Data Link Layer. CCSDS 211.0-B-5. 2013. https://public.ccsds.org/Pubs/211x0b5.pdfGoogle Scholar
  39. 39.
    Cheng M P, Clare L P. Prototyping IP over CCSDS for manned space applications. In: Proceedings of 2010 SpaceOps Conference, Huntsville, 2010. 1–14Google Scholar
  40. 40.
    Consultative Committee for Space Data Systems. CCSDS File Delivery Protocol (CFDP). CCSDS 727.0-B-4. 2007. https://public.ccsds.org/pubs/727x0b4.pdfGoogle Scholar
  41. 41.
    Burleigh S. Operating CFDP in the interplanetary Internet. In: Proceedings of SpaceOps 2002, Houston, 2002. 1–6Google Scholar
  42. 42.
    Wang R, Shrestha B L, Wu X, et al. Unreliable CCSDS file delivery protocol (CFDP) over cislunar communication links. IEEE Trans Aerosp Electron Syst, 2010, 46: 147–169CrossRefGoogle Scholar
  43. 43.
    Yang Z, Li H, Jiao J, et al. CFDP-based two-hop relaying protocol over weather-dependent Ka-band space channel. IEEE Trans Aerosp Electron Syst, 2015, 51: 1357–1374CrossRefGoogle Scholar
  44. 44.
    Sanders F A, Jones G, Levesque M. Transfer of files between the deep impact spacecrafts and the ground data system using CFDP: a case study. In: Proceedings of 2007 IEEE Aerospace Conference, Big Sky, 2007. 1–5Google Scholar
  45. 45.
    de Cola T, Ernst H, Marchese M. Performance analysis of CCSDS file delivery protocol and erasure coding techniques in deep space environments. Comput Netw, 2007, 51: 4032–4049CrossRefzbMATHGoogle Scholar
  46. 46.
    Jiao J, Guol Q, Zhang Q Y. Packets interleaving CCSDS file delivery protocol in deep space communication. IEEE Aerosp Electron Syst Mag, 2011, 26: 5–11CrossRefGoogle Scholar
  47. 47.
    Fall K, Farrell S. DTN: an architectural retrospective. IEEE J Sel Areas Commun, 2008, 26: 828–836CrossRefGoogle Scholar
  48. 48.
    Consultative Committee for Space Data Systems. CCSDS Bundle Protocol Specification. CCSDS 734.2-B-1. 2015. https://public.ccsds.org/Pubs/734x2b1.pdfGoogle Scholar
  49. 49.
    Heimlicher S, Baumann R, May M, et al. The transport layer revisited. In: Proceedings of the 2nd International Conference on Communications Systems Software and Middleware, Bangalore, 2007. 1–8Google Scholar
  50. 50.
    Papastergiou G, Samaras C V, Tsaoussidis V. Where does transport layer fit into space dtn architecture? In: Proceedings of the 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop, Cagliari, 2010. 81–88Google Scholar
  51. 51.
    Papastergiou G, Psaras I, Tsaoussidis V. Deep-space transport protocol: a novel transport scheme for space DTNs. Comput Commun, 2009, 32: 1757–1767CrossRefGoogle Scholar
  52. 52.
    Samaras C V, Tsaoussidis V. Design of delay-tolerant transport protocol (DTTP) and its evaluation for Mars. Acta Astronaut, 2010, 67: 863–880CrossRefGoogle Scholar
  53. 53.
    Papastergiou G, Alexiadis I, Burleigh S, et al. Delay tolerant payload conditioning protocol. Comput Netw, 2014, 59: 244–263CrossRefGoogle Scholar
  54. 54.
    ION-DTN: Delay-Tolerant Networking suitable for use in spacecraft. Version 3.6.1. NASA JPL. 2018Google Scholar
  55. 55.
    Koutsogiannis E, Tsapeli F, Tsaoussidis V. Bundle layer end-to-end retransmission mechanism. In: Proceedings of 2011 Baltic Congress on Future Internet Communications, Riga, 2011. 109–115CrossRefGoogle Scholar
  56. 56.
    de Cola T, Ernst H, Marchese M. Performance analysis of CCSDS file delivery protocol and erasure coding techniques in deep space environments. Comput Netw, 2007, 51: 4032–4049CrossRefzbMATHGoogle Scholar
  57. 57.
    Hou D, Zhao K. Application layer channel coding for space DTN. In: Proceedings of 2017 International Conference on Machine Learning and Intelligent Communications, Weihai, 2017. 347–354Google Scholar
  58. 58.
    de Cola T, Marchese M. Joint use of custody transfer and erasure codes in DTN space networks: benefits and shortcomings. In: Proceedings of 2010 IEEE Global Telecommunications Conference, Miami, 2010. 1–5Google Scholar
  59. 59.
    Gu S, Jiao J, Yang Z, et al. RCLTP: a rateless coding-based Licklider transmission protocol in space delay/disrupt tolerant network. In: Proceedings of 2013 International Conference on Wireless Communications & Signal Processing (WCSP), Hangzhou, 2013. 1–6Google Scholar
  60. 60.
    Lenas S A, Burleigh S C, Tsaoussidis V. Reliable data streaming over delay tolerant networks. In: Proceedings of 2012 International Conference on Wired/Wireless Internet Communications, Santorini, 2012. 358–365Google Scholar
  61. 61.
    Lenas S A, Burleigh S C, Tsaoussidis V. Bundle streaming service: design, implementation and performance evaluation. Trans Emerging Tel Tech, 2015, 26: 905–917CrossRefGoogle Scholar
  62. 62.
    Burleigh S. Contact graph routing IETF Internet draft. Internet-Draft. 2009. https://tools.ietf.org/html/draftburleigh-dtnrg-cgr-00Google Scholar
  63. 63.
    Wang G, Burleigh S, Wang R, et al. Scoping contact graph-routing scalability: investigating the system’s usability in space-vehicle communication networks. IEEE Veh Technol Mag, 2016, 11: 1556–6072CrossRefGoogle Scholar
  64. 64.
    Araniti G, Bezirgiannidis N, Birrane E, et al. Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun Mag, 2015, 53: 38–46CrossRefGoogle Scholar
  65. 65.
    Birrane E, Burleigh S, Kasch N. Analysis of the contact graph routing algorithm: bounding interplanetary paths. Acta Astronaut, 2012, 75: 108–119CrossRefGoogle Scholar
  66. 66.
    Kazz G J, Burleigh S C, Cheung K M, et al. Evolution of the Mars relay network end-to-end information system in the Mars human era (2030-2040). In: Proceedings of 2016 SpaceOps Conference, Daejeon, 2016. 1–10Google Scholar
  67. 67.
    Jiao J, Hu Y, Zhang Q, et al. Performance modeling of LTP-HARQ schemes over OSTBC-MIMO channels for hybrid satellite terrestrial networks. IEEE Access, 2018, 6: 5256–5268CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic Science and EngineeringNanjing UniversityNanjingChina
  2. 2.Harbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations