Decomposition of nonlinear feedback shift registers based on Boolean networks

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    MathSciNet  Article  Google Scholar 

  2. 2

    Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks. London: Springer-Verlag, 2011

    Book  MATH  Google Scholar 

  3. 3

    Hell M, Johansson T, Meier W. Grain: a stream cipher for constrained environments. Int J Wirel Mobile Comput, 2007, 2: 86–93

    Article  Google Scholar 

  4. 4

    Mikhalev V, Armknecht F, Müller C. On ciphers that continuously access the non-volatile key. IACR Trans Symmetric Cryptol, 2016, 2016: 52–79

    Google Scholar 

  5. 5

    Hamann M, Krause M, Meier W. Lizard: a lightweight stream cipher for power-constrained devices. IACR Trans Symmetric Cryptol, 2017, 2017: 45–79

    Google Scholar 

  6. 6

    Dubrova E. A transformation from the Fibonacci to the Galois NLFSRs. IEEE Trans Inform Theor, 2009, 55: 5263–5271

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Golomb SW. Shift Register Sequences. Walnut Creek: Aegean Park Press, 1982

    MATH  Google Scholar 

  8. 8

    Ma Z, Qi W F, Tian T. On the decomposition of an NFSR into the cascade connection of an NFSR into an LFSR. J Complex, 2013, 29: 173–181

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Zhong J, Lin D. A new linearization method for nonlinear feedback shift registers. J Comput Syst Sci, 2015, 81: 783–796

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61772029, 61379139).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianghua Zhong.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Lin, D. Decomposition of nonlinear feedback shift registers based on Boolean networks. Sci. China Inf. Sci. 62, 39110 (2019). https://doi.org/10.1007/s11432-017-9460-4

Download citation