Progressive identification of lateral nonlinear unsteady aerodynamics from wind tunnel test data

This is a preview of subscription content, access via your institution.

References

  1. 1

    Murphy P C, Klein V, Frink N T. Nonlinear unsteady aerodynamic modeling using wind-tunnel and computational data. J Aircraft, 2017, 54: 659–683

    Article  Google Scholar 

  2. 2

    Murphy P C, Vicroy D D, Kramer B, et al. Hybrid wing body model identification using forced-oscillation water tunnel data. In: Proceedings of AIAA Atmospheric Flight Mechanics Conference, Atlanta, 2014

    Google Scholar 

  3. 3

    Luchtenburg D M, Rowley C W, Lohry M W, et al. Unsteady high-angle-of-attack aerodynamic models of a generic jet transport. J Aircraft, 2015, 52: 890–895

    Article  Google Scholar 

  4. 4

    Hu S, Zhu J H. Longitudinal high incidence unsteady aerodynamic modeling for advanced combat aircraft configuration from wind tunnel data. Sci China Inf Sci, 2017, 60: 118201

    Article  Google Scholar 

  5. 5

    Abramov N, Goman M, Khrabrov A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects. In: Proceedings of AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, 2004

    Google Scholar 

  6. 6

    Ignatyev D I, Khrabrov A N. Neural network modeling of unsteady aerodynamic characteristics at high angles of attack. Aerosp Sci Tech, 2015, 41: 106–115

    Article  Google Scholar 

  7. 7

    Wang Q, Qian W Q, He K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines. Chin J Aeronaut, 2015, 28: 659–668

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jihong Zhu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Zhu, J. & Yang, W. Progressive identification of lateral nonlinear unsteady aerodynamics from wind tunnel test data. Sci. China Inf. Sci. 62, 209201 (2019). https://doi.org/10.1007/s11432-017-9458-9

Download citation