Silicon chip-scale space-division multiplexing: from devices to system

Abstract

Space-division multiplexing (SDM) technique has attracted increasing attentions recently, because it provides an effective way to increase transmission capacity. With the continuous and exponential increase in data demands, high-density integration of silicon photonic components is of significant interest in terms of link price, performance and power consumption. The multimode/mutlicore devices applied to achieve diverse functionalities are key building blocks to construct a chip-scale SDM system based on a silicon on insulator (SOI) platform. This study reviews the recent progress of multimode/multicore devices, which enable coupling, multiplexing/demultiplexing, transmitting switching, as well as modulation and detection. Based on these devices, a complete on-chip SDM system is constructed and discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 2008, 57: 1246–1260

    MathSciNet  MATH  Article  Google Scholar 

  2. 2

    Miller D. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97: 1166–1185

    Article  Google Scholar 

  3. 3

    Nagarajan R, Ziari M, Kato M, et al. Large-scale DWDM photonic integrated circuits. In: Proceedings of IEEE LEOS Annual Meeting Conference, Sydney, 2005

    Google Scholar 

  4. 4

    Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol, 2006, 24: 4600–4615

    Article  Google Scholar 

  5. 5

    Narasimha A, Analui B, Liang Y, et al. A fully integrated 4×10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology. IEEE J Solid-State Circ, 2007, 42: 2736–2744

    Article  Google Scholar 

  6. 6

    Doerr C R, Chen L, Buhl L L, et al. Eight-channel SiO2/Si3N4/Si/Ge CWDM receiver. IEEE Photon Technol Lett, 2011, 23: 1201–1203

    Article  Google Scholar 

  7. 7

    Gill D M, Xiong C, Proesel J E, et al. Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters. IEEE Photon Technol Lett, 2016, 28: 1410–1413

    Article  Google Scholar 

  8. 8

    Dong P, Lee J, Chen Y K, et al. Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits. J Lightwave Technol, 2016, 34: 79–84

    Article  Google Scholar 

  9. 9

    Boeuf F, Cremer S, Temporiti E, et al. Recent progress in silicon photonics R&D and manufacturing on 300 mm wafer platform. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2015

    Google Scholar 

  10. 10

    Orcutt J, Gill D M, Proesel J E, et al. Monolithic silicon photonics at 25 Gb/s. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, 2016

    Google Scholar 

  11. 11

    Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt, 1982, 21: 1950–1955

    Article  Google Scholar 

  12. 12

    Murshid S H, Grossman B, Narakorn P. Spatial domain multiplexing: a new dimension in fiber optic multiplexing. Opt Laser Tech, 2008, 40: 1030–1036

    Article  Google Scholar 

  13. 13

    Li G F. The future of space-division multiplexing and its applications. In: Proceedings of OptoElectronics and Communications Conference held jointly with International Conference on Photonics in Switching (OECC/PS), Kyoto, 2013

    Google Scholar 

  14. 14

    Sakaguchi J, Puttnam B, Klaus W, et al. 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2012

    Google Scholar 

  15. 15

    Koshiba M, Saitoh K, Kokubun Y. Heterogeneous multi-core fibers: proposal and design principle. IEICE Electron Express, 2009, 6: 98–103

    Article  Google Scholar 

  16. 16

    Ryf R, Randel S, Gnauck A, et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2011

    Google Scholar 

  17. 17

    Murshid S, Alanzi S, Hridoy A, et al. Combining spatial domain multiplexing and orbital angular momentum of photon-based multiplexing to increase the bandwidth of optical fiber communication systems. Opt Eng, 2016, 55: 066124

    Article  Google Scholar 

  18. 18

    Murshid S, Iqbal J. Spatial combination of optical channels in a multimode waveguide. In: Proceedings of Frontiers in Optics, Rochester, 2010

    Google Scholar 

  19. 19

    Hsu R C J, Tarighat A, Shah A, et al. Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links. IEEE Commun Lett, 2006, 10: 195–197

    Article  Google Scholar 

  20. 20

    Tkach R W. Scaling optical communications for the next decade and beyond. Bell Labs Tech J, 2010, 14: 3–9

    Article  Google Scholar 

  21. 21

    Lai Y X, Yu Y, Fu S N, et al. Efficient spot size converter for higher-order mode fiber-chip coupling. Opt Lett, 2017, 42: 3702–3705

    Article  Google Scholar 

  22. 22

    Wohlfeil B, Rademacher G, Stamatiadis C, et al. A two-dimensional fiber grating coupler on SOI for mode division multiplexing. IEEE Photon Technol Lett, 2016, 28: 1241–1244

    Article  Google Scholar 

  23. 23

    Yu Y, Ye M Y, Fu S N. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photon Technol Lett, 2015, 27: 1957–1960

    Article  Google Scholar 

  24. 24

    Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23: 28376–28388

    Article  Google Scholar 

  25. 25

    Koonen A M L, Chen H S, van den Boom H P A, et al. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon Technol Lett, 2012, 24: 1961–1964

    Article  Google Scholar 

  26. 26

    Ding Y H, Ou H Y, Xu J, et al. Silicon photonic integrated circuit mode multiplexer. IEEE Photon Technol Lett, 2013, 25: 648–651

    Article  Google Scholar 

  27. 27

    Ding Y H, Yvind K. Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber. In: Proceedings of Lasers and Electro-Optics (CLEO), San Jose, 2015

    Google Scholar 

  28. 28

    Wu Y F, Chiang K S. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Opt Lett, 2017, 42: 407–410

    Article  Google Scholar 

  29. 29

    Riesen N, Gross S, Love J D, et al. Femtosecond direct-written integrated mode couplers. Opt Express, 2014, 22: 29855–29861

    Article  Google Scholar 

  30. 30

    Dong J L, Chiang K S, Jin W. Mode multiplexer based on integrated horizontal and vertical polymer waveguide couplers. Opt Lett, 2015, 40: 3125–3128

    Article  Google Scholar 

  31. 31

    Ding Y H, Ye F H, Peucheret C, et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express, 2015, 23: 3292–3298

    Article  Google Scholar 

  32. 32

    Riesen N, Gross S, Love J D, et al. Monolithic mode-selective few-mode multicore fiber multiplexers. Sci Rep, 2017, 7: 6971

    Article  Google Scholar 

  33. 33

    van Uden R G H, Correa R A, Lopez E A, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photon, 2014, 8: 865–870

    Article  Google Scholar 

  34. 34

    Qiu J F, Zhang D L, Tian Y, et al. Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter. IEEE Photonics J, 2015, 7: 1–8

    Article  Google Scholar 

  35. 35

    Li Y M, Li C, Li C B, et al. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt Express, 2014, 22: 5781–5786

    Article  Google Scholar 

  36. 36

    Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol, 2012, 30: 2421–2426

    Article  Google Scholar 

  37. 37

    Greenberg M, Orenstein M. Simultaneous dual mode add/drop multiplexers for optical interconnects buses. Opt Commun, 2006, 266: 527–531

    Article  Google Scholar 

  38. 38

    Dai D X, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38: 1422–1424

    Article  Google Scholar 

  39. 39

    Ding Y H, Xu J, Da Ros F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21: 10376–10382

    Article  Google Scholar 

  40. 40

    Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 3069

    Article  Google Scholar 

  41. 41

    Dorin B A, Ye W N. Two-mode division multiplexing in a silicon-on-insulator ring resonator. Opt Express, 2014, 22: 4547–4558

    Article  Google Scholar 

  42. 42

    Yang Y D, Li Y, Huang Y Z, et al. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express, 2014, 22: 22172–22183

    Article  Google Scholar 

  43. 43

    Qiu H Y, Yu H, Hu T, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express, 2013, 21: 17904–17911

    Article  Google Scholar 

  44. 44

    Davis J A, Grieco A, Souza M C, et al. Hybrid multimode resonators based on grating-assisted counter-directional couplers. Opt Express, 2017, 25: 16484–16490

    Article  Google Scholar 

  45. 45

    Xing J J, Li Z Y, Yu Y D, et al. Design of polarization-independent adiabatic splitters fabricated on silicon-oninsulator substrates. Opt Express, 2013, 21: 26729–26734

    Article  Google Scholar 

  46. 46

    Xing J J, Xiong K, Xu H, et al. Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling. Opt Lett, 2013, 38: 2221–2223

    Article  Google Scholar 

  47. 47

    Xing J J, Li Z Y, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38: 3468–3470

    Article  Google Scholar 

  48. 48

    Wang J, Xuan Y, Qi M H, et al. Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers. Opt Lett, 2015, 40: 1956–1959

    Article  Google Scholar 

  49. 49

    Sun C L, Yu Y, Ye M Y, et al. An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Sci Rep, 2016, 6: 38494

    Article  Google Scholar 

  50. 50

    Wang J, Deng S P, Wong C Y, et al. Monolithically integrated silicon hybrid demultiplexer with improved loss and crosstalk suppression. In: Proceedings of European Conference on Optical Communication, Gothenburg, 2017

    Google Scholar 

  51. 51

    Sun Y, Xiong Y, Ye W N. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt Lett, 2016, 41: 3743–3746

    Article  Google Scholar 

  52. 52

    Li C L, Dai D X. Low-loss and low-crosstalk multi-channel mode (de)multiplexer with ultrathin silicon waveguides. Opt Lett, 2017, 42: 2370–2373

    Article  Google Scholar 

  53. 53

    Sun C L, Yu Y, Chen G Y, et al. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett, 2016, 41: 5511–5514

    Article  Google Scholar 

  54. 54

    Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34: 280–282

    Article  Google Scholar 

  55. 55

    Yariv A, Sun X K. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis. Opt Express, 2007, 15: 9147–9151

    Article  Google Scholar 

  56. 56

    Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38: 1854–1856

    Article  Google Scholar 

  57. 57

    Chen W W, Wang P J, Yang T J, et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y-junctions. Opt Lett, 2016, 41: 2851–2854

    Article  Google Scholar 

  58. 58

    Chen W W, Wang P J, Yang J Y. Optical mode interleaver based on the asymmetric multimode Y-junction. IEEE Photon Technol Lett, 2014, 26: 2043–2046

    Article  Google Scholar 

  59. 59

    Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21: 25113–25119

    Article  Google Scholar 

  60. 60

    Pan T H, Tseng S Y. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express, 2015, 23: 10405–10412

    Article  Google Scholar 

  61. 61

    Guo D F, Chu T. Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express, 2017, 25: 9160–9170

    Article  Google Scholar 

  62. 62

    Chung H C, Lee K S, Tseng S Y. Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics. Opt Express, 2017, 25: 13626–13634

    Article  Google Scholar 

  63. 63

    Chien K H, Yeih C S, Tseng S Y. Mode conversion/splitting in multimode waveguides based on invariant engineering. J Lightwave Technol, 2013, 31: 3387–3394

    Article  Google Scholar 

  64. 64

    Mart´ınez-Garaot S, Tseng S Y, Muga J G. Compact and high conversion efficiency mode-sorting asymmetric Yjunction using shortcuts to adiabaticity. Opt Lett, 2014, 39: 2306–2309

    Article  Google Scholar 

  65. 65

    Tseng S Y, Wen R D, Chiu Y F, et al. Short and robust directional couplers designed by shortcuts to adiabaticity. Opt Express, 2014, 22: 18849–18859

    Article  Google Scholar 

  66. 66

    Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser Photonic Rev, 2014, 8: 18–22

    Article  Google Scholar 

  67. 67

    Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993–6996

    Article  Google Scholar 

  68. 68

    Dai D X, Li C L, Wang S P, et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonic Rev, 2018, 12: 1700109

    Article  Google Scholar 

  69. 69

    Dai D X, Wang J, Chen S T, et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser Photonic Rev, 2015, 9: 339–344

    Article  Google Scholar 

  70. 70

    Chen K X, Wang S Y, Chen S T, et al. Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array. Opt Lett, 2015, 40: 4655–4658

    Article  Google Scholar 

  71. 71

    Song W, Gatdula R, Abbaslou S, et al. High-density waveguide superlattices with low crosstalk. Nat Commun, 2015, 6: 7027

    Article  Google Scholar 

  72. 72

    Yang N, Yang H S, Hu H R, et al. Theory of high-density low-cross-talk waveguide superlattices. Photon Res, 2016, 4: 233–239

    Article  Google Scholar 

  73. 73

    Cerutti I, Andriolli N, Velha P. Engineering of closely packed silicon-on-isolator waveguide arrays for mode division multiplexing applications. J Opt Soc Am B, 2017, 34: 497–506

    Article  Google Scholar 

  74. 74

    Tan K, Huang Y, Lo G Q, et al. Compact highly-efficient polarization splitter and rotator based on 90◦ bends. Opt Express, 2016, 24: 14506–14512

    Article  Google Scholar 

  75. 75

    Dai D X, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express, 2011, 19: 18614–18620

    Article  Google Scholar 

  76. 76

    Wu H, Tan Y, Dai D X. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express, 2017, 25: 6069–6075

    Article  Google Scholar 

  77. 77

    Zhang Y, He Y, Jiang X H, et al. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photonics, 2016, 1: 091304

    Article  Google Scholar 

  78. 78

    Xu H N, Shi Y C. Ultra-broadband 16-channel mode division (de)multiplexer utilizing densely packed bent waveguide arrays. Opt Lett, 2016, 41: 4815–4818

    Article  Google Scholar 

  79. 79

    Xu H N, Shi Y C. Broadband nine-channel mode-division (de)multiplexer based on densely packed multimode waveguide arrays. J Lightwave Technol, 2017, 35: 4949–4953

    Article  Google Scholar 

  80. 80

    Xu H N, Shi Y C. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters. Opt Lett, 2016, 41: 5047–5050

    Article  Google Scholar 

  81. 81

    Luo Y C, Yu Y, Ye M Y, et al. Integrated dual-mode 3 dB power coupler based on tapered directional coupler. Sci Rep, 2016, 6: 23516

    Article  Google Scholar 

  82. 82

    Atsumi Y, Kang J H, Hayashi Y, et al. Analysis of higher-order mode suppressed transmission in low-loss silicon multimode waveguides on silicon-on-insulator substrates. Jpn J Appl Phys, 2014, 53: 078002

    Article  Google Scholar 

  83. 83

    Ahmmed K T, Chan H P, Li B. Broadband high-order mode pass filter based on mode conversion. Opt Lett, 2017, 42: 3686–3689

    Article  Google Scholar 

  84. 84

    Guan X W, Ding Y H, Frandsen L H. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt Lett, 2015, 40: 3893–3896

    Article  Google Scholar 

  85. 85

    R´ıos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photon, 2015, 9: 725–732

    Article  Google Scholar 

  86. 86

    Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus. Nat Commun, 2017, 8: 1256

    Article  Google Scholar 

  87. 87

    Miller K J, Hallman K A, Haglund R F, et al. Silicon waveguide optical switch with embedded phase change material. Opt Express, 2017, 25: 26527–26536

    Article  Google Scholar 

  88. 88

    Huang T Y, Pan Z P, Zhang M M, et al. Design of reconfigurable on-chip mode filters based on phase transition in vanadium dioxide. Appl Phys Express, 2016, 9: 112201

    Article  Google Scholar 

  89. 89

    Xu Q F, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-μm radius. Opt Express, 2008, 16: 4309–4315

    Article  Google Scholar 

  90. 90

    Gabrielli L H, Liu D, Johnson S G, et al. On-chip transformation optics for multimode waveguide bends. Nat Commun, 2012, 3: 1217

    Article  Google Scholar 

  91. 91

    Dai D X. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt Express, 2014, 22: 27524–27534

    Article  Google Scholar 

  92. 92

    Sun C L, Yu Y, Chen G Y, et al. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt Lett, 2017, 42: 3004–3007

    Article  Google Scholar 

  93. 93

    Callewaert F, Aydin K. Inverse-designed all-dielectric waveguide bend. In: Proceedings the 19th Annual Conference for Novel Optical Systems Design and Optimization, San Diego, 2016

    Google Scholar 

  94. 94

    Piggott A Y, Lu J, Lagoudakis K G, et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photon, 2015, 9: 374–377

    Article  Google Scholar 

  95. 95

    Shen B, Wang P, Polson R C, et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint. Nat Photon, 2015, 9: 378–382

    Article  Google Scholar 

  96. 96

    Mak J C C, Sideris C, Jeong J, et al. Binary particle swarm optimized 2×2 power splitters in a standard foundry silicon photonic platform. Opt Lett, 2016, 41: 3868–3871

    Article  Google Scholar 

  97. 97

    Majumder A, Shen B, Polson R, et al. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt Express, 2017, 25: 19721–19731

    Article  Google Scholar 

  98. 98

    Xu K, Liu L, Wen X, et al. Integrated photonic power divider with arbitrary power ratios. Opt Lett, 2017, 42: 855–858

    Article  Google Scholar 

  99. 99

    Piggott A Y, Petykiewicz J, Su L, et al. Fabrication-constrained nanophotonic inverse design. Sci Rep, 2017, 7: 1786

    Article  Google Scholar 

  100. 100

    Liu V, Fan S H. Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk. Opt Express, 2013, 21: 8069–8075

    Article  Google Scholar 

  101. 101

    Chen H, Poon A W. Low-loss multimode-interference-based crossings for silicon wire waveguides. IEEE Photon Technol Lett, 2006, 18: 2260–2262

    Article  Google Scholar 

  102. 102

    Bogaerts W, Dumon P, Thourhout D V, et al. Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt Lett, 2007, 32: 2801–2803

    Article  Google Scholar 

  103. 103

    Kim S H, Cong G W, Kawashima H, et al. Low-crosstalk waveguide crossing based on 1×1 MMI structure of silicon-wire waveguide. In: Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, 2013

    Google Scholar 

  104. 104

    Zhang Y, Hosseini A, Xu X C, et al. Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers. Opt Lett, 2013, 38: 3608–3611

    Article  Google Scholar 

  105. 105

    Liu Y Y, Shainline J M, Zeng X G, et al. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt Lett, 2014, 39: 335–338

    Article  Google Scholar 

  106. 106

    Xu H N, Shi Y C. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt Lett, 2016, 41: 5381–5384

    Article  Google Scholar 

  107. 107

    Sun C L, Yu Y, Zhang X L. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt Lett, 2017, 42: 4913–4916

    Article  Google Scholar 

  108. 108

    van Campenhout J, Green W M, Assefa S, et al. Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt Express, 2009, 17: 24020–24029

    Article  Google Scholar 

  109. 109

    Dong P, Liao S R, Liang H, et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt Express, 2010, 18: 25225–25231

    Article  Google Scholar 

  110. 110

    Yang M, Green W M J, Assefa S, et al. Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks. Opt Express, 2011, 19: 47–54

    Article  Google Scholar 

  111. 111

    Han S Y, Seok T J, Quack N, et al. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2: 370–375

    Article  Google Scholar 

  112. 112

    Murray K, Lu Z Q, Jayatilleka H, et al. Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt Express, 2015, 23: 19575–19585

    Article  Google Scholar 

  113. 113

    Chen S T, Shi Y C, He S L, et al. Low-loss and broadband 2×2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt Lett, 2016, 41: 836–839

    Article  Google Scholar 

  114. 114

    Seok T J, Quack N, Han S, et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3: 64–70

    Article  Google Scholar 

  115. 115

    Wilkes C M, Qiang X, Wang J, et al. 60 dB high-extinction auto-configured Mach-Zehnder interferometer. Opt Lett, 2016, 41: 5318–5321

    Article  Google Scholar 

  116. 116

    Nikolova D, Calhoun D M, Liu Y, et al. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsyst Nanoeng, 2017, 3: 16071

    Article  Google Scholar 

  117. 117

    Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core. Nat Commun, 2017, 8: 636

    Article  Google Scholar 

  118. 118

    Seok T J, Kopp V I, Neugroschl D, et al. High density optical packaging of high radix silicon photonic switches. In: Proceedings of Optical Fiber Communication Conference and Exhibition (OFC), Los Angeles, 2017

    Google Scholar 

  119. 119

    Sun C L, Yu Y, Chen G Y, et al. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt Lett, 2016, 41: 3257–3260

    Article  Google Scholar 

  120. 120

    Huang Q D, Jin W, Chiang K S. Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer. Opt Lett, 2017, 42: 4877–4880

    Article  Google Scholar 

  121. 121

    Ding Y H, Kamchevska V, Dalgaard K, et al. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Sci Rep, 2016, 6: 39058

    Article  Google Scholar 

  122. 122

    Wu X R, Xu K, Dai D X, et al. Mode division multiplexing switch for on-chip optical interconnects. In: Proceedings of OptoElectronics and Communications Conference (OECC), Niigata, 2016

    Google Scholar 

  123. 123

    Stern B, Zhu X L, Chen C P, et al. On-chip mode-division multiplexing switch. Optica, 2015, 2: 530–535

    Article  Google Scholar 

  124. 124

    Zhang Y, Zhu Q M, He Y, et al. Silicon 1×2 mode-and polarization-selective switch. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2017

    Google Scholar 

  125. 125

    Jia H, Zhou T, Zhang L, et al. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt Express, 2017, 25: 20698–20707

    Article  Google Scholar 

  126. 126

    Chan W Y, Chan H P. Reconfigurable two-mode mux/demux device. Opt Express, 2014, 22: 9282–9290

    Article  Google Scholar 

  127. 127

    Sun C L, Yu Y, Chen G Y, et al. On-chip switch for reconfigurable mode-multiplexing optical network. Opt Express, 2016, 24: 21722–21728

    Article  Google Scholar 

  128. 128

    Xiong Y L, Priti R B, Liboiron L O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4: 1098–1102

    Article  Google Scholar 

  129. 129

    Chen S T, Shi Y C, He S L, et al. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photon Technol Lett, 2016, 28: 1874–1877

    Article  Google Scholar 

  130. 130

    Wang S P, Wu H, Tsang H K, et al. Monolithically integrated reconfigurable add-drop multiplexer for mode-divisionmultiplexing systems. Opt Lett, 2016, 41: 5298–5301

    Article  Google Scholar 

  131. 131

    Wang S P, Feng X L, Gao S M, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/modedivision-multiplexing systems. Opt Lett, 2017, 42: 2802–2805

    Article  Google Scholar 

  132. 132

    Xiao X, Xu H, Li X Y, et al. 60 Gbit/s silicon modulators with enhanced electro-optical efficiency. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC), Anaheim, 2013

    Google Scholar 

  133. 133

    Timurdogan E, Sorace-Agaskar C M, Sun J, et al. An ultralow power athermal silicon modulator. Nat Commun, 2014, 5: 4008

    Article  Google Scholar 

  134. 134

    Xiong C, Gill D M, Proesel J E, et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica, 2016, 3: 1060–1065

    Article  Google Scholar 

  135. 135

    Dubé-Demers R, LaRochelle S, Shi W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 2016, 3: 622–627

    Article  Google Scholar 

  136. 136

    Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20: 1096–1101

    Article  Google Scholar 

  137. 137

    DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19: 24897–24904

    Article  Google Scholar 

  138. 138

    Chen G Y, Yu Y, Deng S P, et al. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt Express, 2015, 23: 25700–25706

    Article  Google Scholar 

  139. 139

    Chen G Y, Yu Y, Xiao X, et al. High speed and high power polarization insensitive germanium photodetector with lumped structure. Opt Express, 2016, 24: 10030–10039

    Article  Google Scholar 

  140. 140

    Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors. Nat Photon, 2010, 4: 527–534

    Article  Google Scholar 

  141. 141

    Logan D F, Velha P, Sorel M, et al. Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 μm. IEEE Photon Technol Lett, 2010, 22: 1530–1532

    Article  Google Scholar 

  142. 142

    Preston K, Lee Y H D, Zhang M, et al. Waveguide-integrated telecom-wavelength photodiode in deposited silicon. Opt Lett, 2011, 36: 52–54

    Article  Google Scholar 

  143. 143

    Mehta K K, Orcutt J S, Shainline J M, et al. Polycrystalline silicon ring resonator photodiodes in a bulk comple mentary metal-oxide-semiconductor process. Opt Lett, 2014, 39: 1061–1064

    Article  Google Scholar 

  144. 144

    Alloatti L, Ram R J. Resonance-enhanced waveguide-coupled silicon-germanium detector. Appl Phys Lett, 2016, 108: 071105

    Article  Google Scholar 

  145. 145

    Brouckaert J, Roelkens G, Van Thourhout D, et al. Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs. J Lightwave Technol, 2007, 25: 1053–1060

    Article  Google Scholar 

  146. 146

    Park H, Fang A W, Jones R, et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt Express, 2007, 15: 6044–6052

    Article  Google Scholar 

  147. 147

    Ng D K T, Wang Q, Pu J, et al. Demonstration of heterogeneous III-V/Si integration with a compact optical vertical interconnect access. Opt Lett, 2013, 38: 5353–5356

    Article  Google Scholar 

  148. 148

    Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech, 2014, 9: 780–793

    Article  Google Scholar 

  149. 149

    Bie Y Q, Grosso G, Heuck M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotech, 2017, 12: 1124–1129

    Article  Google Scholar 

  150. 150

    Dong P, Xie C J, Buhl L L. Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon. Opt Express, 2014, 22: 2119–2125

    Article  Google Scholar 

  151. 151

    Doerr C R, Winzer P J, Chen Y K, et al. Monolithic polarization and phase diversity coherent receiver in silicon. J Lightwave Technol, 2010, 28: 520–525

    Article  Google Scholar 

  152. 152

    Ding R, Liu Y, Li Q, et al. A compact low-power 320-Gb/s WDM transmitter based on silicon microrings. IEEE Photonic J, 2014, 6: 1–8

    Article  Google Scholar 

  153. 153

    Gill D M, Proesel J E, Xiong C, et al. Demonstration of a high extinction ratio monolithic CMOS integrated nanophotonic transmitter and 16 Gb/s optical link. IEEE J Sel Top Quant Electron, 2015, 21: 212–222

    Article  Google Scholar 

  154. 154

    Chen K X, Huang Q S, Zhang J H, et al. Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects. IEEE Photonic J, 2016, 8: 1–10

    Google Scholar 

  155. 155

    Zhang C, Zhang S J, Peters J D, et al. 8×8×40 Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3: 785–786

    Article  Google Scholar 

  156. 156

    Chen G Y, Yu Y, Zhou D, et al. Three modes multiplexed photonic integrated circuit for large capacity optical interconnection. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2017

    Google Scholar 

  157. 157

    Chen G Y, Yu Y, Ye M Y, et al. Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit. Opt Express, 2016, 24: 14841–14850

    Article  Google Scholar 

  158. 158

    Wu X R, Huang C R, Xu K, et al. 3×104 Gb/s single-interconnect of mode-division multiplexed network with a multicore fiber. J Lightwave Technol, 2018, 36: 318–324

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61275072, 61475050, 61775073), New Century Excellent Talent Project in Ministry of Education of China (Grant No. NCET-13-0240), and Director fund of WNLO and Nature Science Foundation of Hubei Province, China (Grant No. 2016CFB416).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinliang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Sun, C. & Zhang, X. Silicon chip-scale space-division multiplexing: from devices to system. Sci. China Inf. Sci. 61, 080403 (2018). https://doi.org/10.1007/s11432-017-9449-4

Download citation

Keywords

  • integrated optics devices
  • space-division multiplexing
  • optical switching devices