Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft

Abstract

In this paper, the attitude tracking control problem for a rigid spacecraft in the presence of system parameter uncertainties and external disturbances is addressed. First, a new nonsingular finite-time sliding surface is introduced and third-order sliding mode finite-time attitude control law is designed to achieve precise accurate tracking responses and robustness against inertia uncertainties and external disturbances. The stability of the closed-loop system is rigorously proved using the Lyapunov stability theory. Then, a new finite-time extended state observer is established to estimate total disturbances of the system. The extended stated observer-based sliding mode control technique yields improved disturbance rejection and high-precision attitude tracking. Moreover, this control law can avoid the unwinding phenomenon and overcome the input saturation constraint by introducing an auxiliary variable to compensate for the overshooting. A Lyapunov based analysis is provided to guarantee sufficiently small observation error and stabilization of the closed-loop system in finite time. Numerical simulations are conducted to verify the effectiveness of the proposed control method.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Chen Z Y, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans Autom Control, 2009, 54: 600–605

    MathSciNet  MATH  Google Scholar 

  2. 2

    Zhu Z, Xia Y Q, Fu M Y. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans Ind Electron, 2011, 58: 4898–4907

    Google Scholar 

  3. 3

    Yeh F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters. IET Control Theory Appl, 2010, 4: 1254–1264

    Google Scholar 

  4. 4

    Lu K F, Xia Y Q, Zhu Z, et al. Sliding mode attitude tracking of rigid spacecraft with disturbances. J Franklin Inst, 2012, 349: 413–440

    MathSciNet  MATH  Google Scholar 

  5. 5

    Luo W C, Chu Y C, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans Autom Control, 2005, 50: 1639–1654

    MathSciNet  MATH  Google Scholar 

  6. 6

    Pukdeboon C, Zinober A S I. Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft. J Franklin Inst, 2012, 349: 456–475

    MathSciNet  MATH  Google Scholar 

  7. 7

    Zou A M. Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Trans Control Syst Technol, 2014, 22: 338–345

    Google Scholar 

  8. 8

    Show L L, Juang J C, Jan Y W. An LMI-based nonlinear attitude control approach. IEEE Trans Control Syst Technol, 2003, 11: 73–83

    Google Scholar 

  9. 9

    Cong B L, Liu X D, Chen Z. Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers. J Aerosp Eng, 2013, 22: 1–7

    Google Scholar 

  10. 10

    Guo Y, Song S M. Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix. Chinese J Aeronaut, 2014, 27: 375–382

    Google Scholar 

  11. 11

    Pisu P, Serrani A. Attitude tracking with adaptive rejection of rate gyro disturbances. IEEE Trans Autom Control, 2007, 52: 2374–2379

    MathSciNet  MATH  Google Scholar 

  12. 12

    Zou A M, Kumar K D. Adaptive fuzzy fault-tolerant attitude control of spacecraft. Control Eng Pract, 2011, 19: 10–21

    Google Scholar 

  13. 13

    Utkin V I. Sliding Modes in Control and Optimization. Berlin: Spinger, 1992

    Google Scholar 

  14. 14

    Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM J Control Opt, 2000, 38: 751–766

    MathSciNet  MATH  Google Scholar 

  15. 15

    Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability. Math Control Signal Syst, 2005, 17: 101–127

    MathSciNet  MATH  Google Scholar 

  16. 16

    Man Z H, Paplinski A P,Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Control, 1994, 39: 2464–2469

    MathSciNet  MATH  Google Scholar 

  17. 17

    Wu Y Q, Yu X H, Man Z H. Terminal sliding mode control design for uncertain dynamic systems. Syst Control Lett, 1998, 34: 281–287

    MathSciNet  MATH  Google Scholar 

  18. 18

    Lu K F, Xia Y Q. Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl, 2013, 7: 1529–1539

    MathSciNet  Google Scholar 

  19. 19

    Pukdeboon C, Siricharuanun P. Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking. Int J Control Autom Syst, 2014, 12: 530–540

    Google Scholar 

  20. 20

    Guo Y, Song S M, Li X H. Quaternion-based finite-time control for attitude tracking of the spacecraft without unwinding. Int J Control Autom Syst, 2015, 13: 1351–1359

    Google Scholar 

  21. 21

    Zhao L, Jia Y M. Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques. Int J Control, 2015, 88: 1150–1162

    MathSciNet  MATH  Google Scholar 

  22. 22

    Tiwari P M, Janardhanan S, un Nabi M. Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerosp Sci Technol, 2015, 42: 50–57

    Google Scholar 

  23. 23

    Gui H, Vukovich G. Adaptive integral sliding mode control for spacecraft attitude tracking with actuator uncertainty. J Franklin Inst, 2015, 352: 5832–5852

    MathSciNet  MATH  Google Scholar 

  24. 24

    Chen M, Wu Q X, Cui R X. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans, 2013, 52: 198–206

    Google Scholar 

  25. 25

    Wallsgrove R J, Akella M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. J Guid Control Dyn, 2005, 28: 957–963

    Google Scholar 

  26. 26

    Boškovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. J Guid Control Dyn, 2001, 24: 14–22

    Google Scholar 

  27. 27

    Hu Q L, Li B, Qi J T. Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation. Aerosp Sci Technol, 2014, 39: 13–21

    Google Scholar 

  28. 28

    Laghrouche S, Smaoui M, Plestan F, et al. Higher order sliding mode control based on optimal approach of an electropneumatic actuator. Int J Control, 2006, 79: 119–131

    MathSciNet  MATH  Google Scholar 

  29. 29

    Benahdouga S, Boukhetala D, Boudjema F. Decentralized high order sliding mode control of multimachine power systems. Int J Electr Power Energy Syst, 2012, 43: 1081–1086

    Google Scholar 

  30. 30

    Tian B L, Zong Q, Wang J, et al. Quasi-continuous high-order sliding mode controller design for reusable launch vehicles in reentry phase. Aerosp Sci Technol, 2013, 28: 198–207

    Google Scholar 

  31. 31

    Delprat S, de Loza A F. High order sliding mode control for hybrid vehicle stability. Int J Syst Sci, 2014, 45: 1202–1212

    MathSciNet  MATH  Google Scholar 

  32. 32

    Perruquetti W, Barbot J P. Sliding Mode Control in Engineering. New York: Marcel Dekker, 2002

    Google Scholar 

  33. 33

    Edwards C, Colet E F, Fridman L. Advances in Variable Structure and Sliding Mode Control. Berlin: Springer, 2006

    Google Scholar 

  34. 34

    Levant A. Higher-order sliding modes, differentiation and output-feedback control. Int J Control, 2003, 76: 924–941

    MathSciNet  MATH  Google Scholar 

  35. 35

    Levant A, Pridor A, Gitizadeh R, et al. Aircraft pitch control via second-order sliding technique. J Guid Control Dyn, 2000, 23: 586–594

    Google Scholar 

  36. 36

    Shtessel Y B, Shkolnikov I A, Levant A. Smooth second-order sliding modes: missile guidance application. Automatica, 2007, 43: 1470–1476

    MathSciNet  MATH  Google Scholar 

  37. 37

    Pukdeboon C. Output feedback second order sliding mode control for spacecraft attitude and translation motion. Int J Control Autom Syst, 2016, 14: 411–424

    MathSciNet  Google Scholar 

  38. 38

    Pukdeboon C, Zinober A S I, Thein M W L. Quasi-continuous higher order sliding-mode controllers for spacecraftattitude-tracking maneuvers. IEEE Trans Ind Electron, 2010, 57: 1436–1444

    Google Scholar 

  39. 39

    Shen Y X, Shao K Y, Ren W J, et al. Diving control of autonomous underwater vehicle based on improved active disturbance rejection control approach. Neurocomputing, 2016, 173: 1377–1385

    Google Scholar 

  40. 40

    Su Y X, Zheng C H, Duan B Y. Automatic disturbances rejection controller for precise motion control of permanentmagnet synchronous motors. IEEE Trans Ind Electron, 2005, 52: 814–823

    Google Scholar 

  41. 41

    Zhu Z, Xu D, Liu J M, et al. Missile guidance law based on extended state observer. IEEE Trans Ind Electron, 2013, 60: 5882–5891

    Google Scholar 

  42. 42

    Lu K F, Xia Y Q. Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl, 2013, 7: 1529–1539

    MathSciNet  Google Scholar 

  43. 43

    Yang J, Li S H, Yu X H. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron, 2012, 60: 160–169

    Google Scholar 

  44. 44

    Yang J, Li S H, Su J Y, et al. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica, 2013, 49: 2287–2291

    MathSciNet  MATH  Google Scholar 

  45. 45

    Yang J, Su J Y, Li S H, et al. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans Ind Inf, 2014, 10: 604–614

    Google Scholar 

  46. 46

    Yang J, Chen W H, Li S H, et al. Disturbance/uncertainty estimation and attenuation techniques in PMSM drives — a survey. IEEE Trans Ind Electron, 2017, 64: 3273–3285

    Google Scholar 

  47. 47

    Wertz J R. Spacecraft Attitude Determination and Control. Berlin: Kluwer Academic, 1978

    Google Scholar 

  48. 48

    Sidi M J. Spacecraft Dynamics and Control a Practical Engineering Approach. Cambridge: Cambridge University Press, 1997

    Google Scholar 

  49. 49

    Shuster M D. A survey of attitude representations. J Astronaut Sci, 1993, 41: 439–517

    MathSciNet  Google Scholar 

  50. 50

    Lan Q X, Qian C J, Li S H. Finite-time disturbance observer design and attitude tracking control of a rigid spacecraft. J Dyn Syst Meas Control, 2017, 139: 061010

    Google Scholar 

  51. 51

    Yan R D, Wu Z. Attitude stabilization of flexible spacecrafts via extended disturbance observer based controller. Acta Astronaut, 2017, 133: 73–80

    Google Scholar 

  52. 52

    Zhong C X, Chen Z Y, Guo Y. Attitude control for flexible spacecraft with disturbance rejection. IEEE Trans Aerosp Electron Syst, 2017, 53: 101–110

    Google Scholar 

  53. 53

    Chen M, Ren B B, Wu Q X, et al. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci China Inf Sci, 2015, 58: 070202

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by King Mongkut’s University of Technology North Bangkok and Thailand Research Fund (TRF) (Grant No. RSA6080043).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chutiphon Pukdeboon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pukdeboon, C. Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft. Sci. China Inf. Sci. 62, 12206 (2019). https://doi.org/10.1007/s11432-017-9389-9

Download citation

Keywords

  • third-order sliding mode
  • sliding mode control
  • extended stated observer
  • finite-time convergence
  • unwinding phenomenon