Abstract
Hybrid cavities composed of a Fabry-Pérot (FP) cavity and a whispering-gallery mode (WGM) microcavity have been proposed and demonstrated for modulating mode Q factor to realize single mode and optical bistable lasers. In this article, we report hybrid cavity lasers with a pentagon microcavity and a square microcavity, respectively. The reflectivity spectra of different microcavities are simulated to select microcavities for hybrid cavities. Mode coupling with mode Q factor enhancement is investigated numerically and experimentally. Stable single mode operations with a high coupling efficiency to a single mode fiber are realized for a hybrid cavity laser with a square microcavity. Furthermore, optical bistability hybrid lasers are investigated as the microcavity is unbiased, due to saturable absorption in the microcavity and mode competition, respectively. All-optical flip-flop is demonstrated using trigger optical pulses with a width of 100 ps for mode competition bistability. The stable single mode operation and optical bistability of hybrid cavity lasers may shed light on the applications for photonic integrated circuits and optical signal processing.
This is a preview of subscription content, access via your institution.
References
- 1
McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60: 289–291
- 2
Choi S J, Djordjev K, Sang J C K, et al. Microdisk lasers vertically coupled to output waveguides. IEEE Photon Technol Lett, 2003, 15: 1330–1332
- 3
Audet R, Belkin M A, Fan J A, et al. Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators. Appl Phys Lett, 2007, 91: 131106
- 4
Song Q H, Ge L, Stone A D, et al. Directional laser emission from a wavelength-scale chaotic microcavity. Phys Rev Lett, 2010, 105: 103902
- 5
Jiang X F, Xiao Y F, Zou C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater, 2012, 24: 260–264
- 6
Guo W-H, Huang Y-Z, Lu Q-Y, et al. Modes in square resonators. IEEE J Quantum Electron, 2003, 39: 1563–1566
- 7
Huang Y Z, Che K J, Yang Y D, et al. Directional emission InP/GaInAsP square-resonator microlasers. Opt Lett, 2008, 33: 2170–2172
- 8
Huang Y Z, Lü X M, Lin J D, et al. Output characteristics of square and circular resonator microlasers connected with two output waveguides. Sci China Technol Sci, 2013, 56: 538–542
- 9
Long H, Huang Y Z, Yang Y D, et al. Mode characteristics of unidirectional emission AlGaInAsInP square resonator microlasers. IEEE J Quantum Electron, 2014, 50: 981–989
- 10
Long H, Huang Y Z, Yang Y D, et al. Mode and modulation characteristics for microsquare lasers with a vertex output waveguide. Sci China-Phys Mech Astron, 2015, 58: 114205
- 11
Ma X W, Huang Y Z, Yang Y D, et al. Mode coupling in hybrid square-rectangular lasers for single mode operation. Appl Phys Lett, 2016, 109: 071102
- 12
Ma X W, Huang Y Z, Yang Y D, et al. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J Sel Top Quantum Electron, 2017, 23: 1500409
- 13
Huang Y Z, Ma X W, Yang Y D, et al. Lasing characteristics of integrated lasers with whispering-gallery mode microresonator. In: Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE), San Francisco, 2016. 9751: 97510J
- 14
Tsang W T, Olsson N A, Logan R A. High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers. Appl Phys Lett, 1983, 42: 650–652
- 15
Coldren L A. Monolithic tunable diode lasers. IEEE J Sel Top Quantum Electron, 2000, 6: 988–999
- 16
He J J, Liu D. Wavelength switchable semiconductor laser using half-wave V-coupled cavities. Opt Expr, 2008, 16: 3896–3911
- 17
Shang L, Liu L, Xu L. Single-frequency coupled asymmetric microcavity laser. Opt Lett, 2008, 33: 1150–1152
- 18
D’Agostino D, Lenstra D, Ambrosius H P M M, et al. Coupled cavity laser based on anti-resonant imaging via multimode interference. Opt Lett, 2015, 40: 653–656
- 19
Li X, Zhu Z, Xi Y, et al. Single-mode Fabry-Perot laser with deeply etched slanted double trenches. Appl Phys Lett, 2015, 107: 091108
- 20
Tanaka Y, Upham J, Nagashima T, et al. Dynamic control of the Q-factor in a photonic crystal nanocavity. Nat Mater, 2007, 6: 862–865
- 21
Hughes S. Coupled-cavity QED using planar photonic crystals. Phys Rev Lett, 2007, 98: 083603
- 22
Tanabe T, Notomi M, Taniyama H, et al. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys Rev Lett, 2009, 102: 043907
- 23
Sato Y, Tanaka Y, Upham J, et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat Photon, 2011, 6: 5661
- 24
Dündar M A, Voorbraak J A M, Nötzel R, et al. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Appl Phys Lett, 2012, 100: 081107
- 25
Jin C Y, Johne R, Swinkels M Y, et al. Ultrafast non-local control of spontaneous emission. Nat Nanotech, 2014, 9: 886–890
- 26
Ma X W, Huang Y Z, Yang Y D, et al. All-optical flip-flop based on hybrid square-rectangular bistable lasers. Opt Lett, 2017, 42: 2291–2294
- 27
Johnson J E, Tang C L, Grande W J. Optical flip-flop based on two-mode intensity bistability in a cross-coupled bistable laser diode. Appl Phys Lett, 1993, 63: 3273–3275
- 28
Kawaguchi H. Bistable laser diodes and their applications: state of the art. IEEE J Sel Top Quantum Electron, 1997, 3: 1254–1270
- 29
Saitoh E, Miyajima H, Yamaoka T, et al. Current-induced resonance and mass determination of a single magnetic domain wall. Nature, 2004, 432: 203–206
- 30
Takenaka M, Raburn M, Nakano Y. All-optical flip-flop multimode interference bistable laser diode. IEEE Photon Technol Lett, 2005, 17: 968–970
- 31
Huybrechts K, Morthier G, Baets R. Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt Expr, 2008, 16: 11405–11410
- 32
Liu L, Kumar R, Huybrechts K, et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat Photon, 2010, 4: 182–187
- 33
Wu Y, Zhu Y, Liao X, et al. All-optical flip-flop operation based on bistability in V-cavity laser. Opt Expr, 2016, 24: 12507–12514
- 34
Fitsios D, Alexoudi T, Bazin A, et al. Ultra-compact III-V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s. Opt Expr, 2016, 24: 4270–4277
- 35
Alexoudi T, Fitsios D, Bazin A, et al. III-V-on-Si photonic crystal nanocavity laser technology for optical static random access memories. IEEE J Sel Top Quantum Electron, 2016, 22: 4901410
- 36
Mori T, Yamayoshi Y, Kawaguchi H. Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser. Appl Phys Lett, 2006, 88: 101102
- 37
Katayama T, Ooi T, Kawaguchi H. Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 2009, 45: 1495–1504
- 38
Alharthi S S, Hurtado A, Korpijarvi V M, et al. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser. Appl Phys Lett, 2015, 106: 021117
- 39
Guo W-H, Li W-J, Huang Y-Z. Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation. IEEE Microw Wireless Compon Lett, 2001, 11: 223–225
- 40
Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Opt Expr, 2009, 17: 23010–23015
- 41
Harder C, Lau K Y, Yariv A. Bistability and pulsations in CW semiconductor lasers with a controlled amount of saturable absorption. Appl Phys Lett, 1981, 39: 382–384
- 42
Li J, Wang Q. A common-cavity two-section InGaAsP/InP bistable laser with a low optical switching power. Opt Commun, 1991, 83: 71–75
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61235004, 61527823, 61376048).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, Y., Ma, X., Yang, Y. et al. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci. China Inf. Sci. 61, 080401 (2018). https://doi.org/10.1007/s11432-017-9361-3
Received:
Revised:
Accepted:
Published:
Keywords
- optical microcavity
- semiconductor lasers
- hybrid cavity
- optical bistability
- single mode laser