Modeling dark signal of CMOS image sensors irradiated by reactor neutron using Monte Carlo method


The dark signal degradation of the CMOS image sensor (CIS) was induced by neutron radiation, and it was modeled by Geant4, which is a three-dimensional Monte Carlo code. The simplified model of the CIS array was established according to the actual pixel geometry, material, and doping concentration. Nuclear elastic interaction and capture interaction were included in the physical processes, and the displacement damage dose in the space charge region of the pixel was calculated. The mean dark signal and dark signal distribution were modeled using Geant4, and the physical mechanisms were analyzed. The modeling results were in good agreement with the experimental and theoretical results.

This is a preview of subscription content, access via your institution.


  1. 1

    Zhou Y F, Cao Z X, Qin Q, et al. A high speed 1000 fps CMOS image sensor with low noise global shutter pixels. Sci China Inf Sci, 2014, 57: 042405

    Google Scholar 

  2. 2

    Zhou Y F, Cao Z X, Han Y, et al. A low power global shutter pixel with extended FD voltage swing range for large format high speed CMOS image sensor. Sci China Inf Sci, 2015, 58: 042406

    Google Scholar 

  3. 3

    Chen Z, Di S, Cao Z X, et al. A 256×256 time-of-flight image sensor based on center-tap demodulation pixel structure. Sci China Inf Sci, 2016, 59: 042409

    Article  Google Scholar 

  4. 4

    Xue Y Y, Wang Z J, Liu M B, et al. Research on proton radiation effects on CMOS image sensors with experimental and particle transport simulation methods. Sci China Inf Sci, 2017, 60: 120402

    Article  Google Scholar 

  5. 5

    Chen W, Yang H L, Guo X Q, et al. The research status and challenge of space radiation physics and application (in Chinese). Chin Sci Bull, 2017, 62: 978–989

    Article  Google Scholar 

  6. 6

    Goiffon V, Virmontois C, Magnan P, et al. Identification of radiation induced dark current sources in pinned photodiode CMOS image sensors. IEEE Trans Nucl Sci, 2012, 59: 918–926

    Article  Google Scholar 

  7. 7

    Goiffon V, Estribeau M, Magnan P. Overview of ionizing radiation effects in image sensors fabricated in a deepsubmicrometer CMOS imaging technology. IEEE Trans Electron Dev, 2009, 56: 2594–2601

    Article  Google Scholar 

  8. 8

    Virmontois C, Goiffon V, Magnan P, et al. Similarities between proton and neutron induced dark current distribution in CMOS image sensors. IEEE Trans Nucl Sci, 2012, 59: 927–936

    Article  Google Scholar 

  9. 9

    Virmontois C, Goiffon V, Magnan P, et al. Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology. IEEE Trans Nucl Sci, 2010, 57: 3101–3108

    Google Scholar 

  10. 10

    Wang Z J, Liu C J, Ma Y, et al. Degradation of CMOS APS image sensors induced by total ionizing dose radiation at different dose rates and biased conditions. IEEE Trans Nucl Sci, 2015, 62: 527–533

    Article  Google Scholar 

  11. 11

    Wang Z J, Ma W Y, Liu J, et al. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates. Nucl Instrum Meth Phys Res A, 2016, 820: 89–94

    Article  Google Scholar 

  12. 12

    Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications. IEEE Trans Nucl Sci, 2006, 53: 270–278

    Article  Google Scholar 

  13. 13

    European Machine Vision Association (EMVA). EMVA Stand 1288. 2012

  14. 14

    Srour J R, Palko J W. Displacement damage effects in irradiated semiconductor devices. IEEE Trans Nucl Sci, 2013, 60: 1740–1766

    Article  Google Scholar 

  15. 15

    Wang Z J, Huang S Y, Liu M B, et al. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor. AIP Adv, 2014, 4: 077108

    Article  Google Scholar 

  16. 16

    Srour J R, Lo D H. Universal damage factor for radiation-induced dark current in silicon devices. IEEE Trans Nucl Sci, 2000, 47: 2451–2459

    Article  Google Scholar 

Download references


This work was supported by Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDA15015000), National Natural Science Foundational of China (Grant No. 11690043), and Foundation of State Key Laboratory of China (Grant No. SKLIPR1610).

Author information



Corresponding authors

Correspondence to Zujun Wang or Wei Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Wang, Z., Chen, W. et al. Modeling dark signal of CMOS image sensors irradiated by reactor neutron using Monte Carlo method. Sci. China Inf. Sci. 61, 062405 (2018).

Download citation


  • modeling
  • CIS
  • neutron radiation
  • dark signal
  • Geant4