Quantitative SNR analysis of QFM signals in the LPFT domain with Gaussian windows

Abstract

The purpose of this paper is to present a quantitative SNR analysis of quadratic frequency modulated (QFM) signals. This analysis is located in the continuous-time local polynomial Fourier transform (LPFT) domain using a Gaussian window function based on the definition of 3 dB signal-to-noise ratio (SNR). First, the maximum value of the local polynomial periodogram (LPP), and the 3 dB bandwidth in the LPFT domain for a QFM signal is derived, respectively. Then, based on these results, the 3 dB SNR of a QFM signal with Gaussian window function is given in the LPFT domain with one novel idea highlighted: the relationship among standard SNR, parameters of QFM signals and Gaussian window function is clear, and the potential application is demonstrated in the parameter estimation of a QFM signal using the LPFT. Moreover, the 3 dB SNR in the LPFT domain is compared with that in the linear canonical transform (LCT) domain. The validity of theoretical derivations is confirmed via simulation results. It is shown that, in terms of SNR, QFM signals in the LPFT domain can achieve a significantly better performance than those in the LCT domain.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Wang J Z, Su S Y, Chen Z P. Parameter estimation of chirp signal under low SNR. Sci China Inf Sci, 2015, 58: 020307

    Google Scholar 

  2. 2

    Cohen L. Time-frequency distributions-a review. Proc IEEE, 1989, 77: 941–981

    Article  Google Scholar 

  3. 3

    Whitelonis N, Ling H. Radar signature analysis using a joint time-frequency distribution based on compressed sensing. IEEE Trans Antenn Propagat, 2014, 62: 755–763

    Article  Google Scholar 

  4. 4

    Chen V C, Ling H. Joint time-frequency analysis for radar signal and image processing. IEEE Signal Process Mag, 1999, 16: 81–93

    Article  Google Scholar 

  5. 5

    Pitton J W, Wang K S, Juang B H. Time-frequency analysis and auditory modeling for automatic recognition of speech. Proc IEEE, 1996, 84: 1199–1215

    Article  Google Scholar 

  6. 6

    Amin M G. Interference mitigation in spread spectrum communication systems using time-frequency distributions. IEEE Trans Signal Process, 1997, 45: 90–101

    Article  Google Scholar 

  7. 7

    Xia X-G. A quantitative analysis of SNR in the short-time Fourier transform domain for multicomponent signals. IEEE Trans Signal Process, 1998, 46: 200–203

    Article  Google Scholar 

  8. 8

    Bai G, Tao R, Zhao J, et al. Fast FOCUSS method based on bi-conjugate gradient and its application to space-time clutter spectrum estimation. Sci China Inf Sci, 2017, 60: 082302

    Article  Google Scholar 

  9. 9

    Mu W F, Amin M G. SNR analysis of time-frequency distributions. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Turkey, 2000. II645–II648

    Google Scholar 

  10. 10

    Li X M, Bi G A, Ju Y T. Quantitative SNR analysis for ISAR imaging using LPFT. IEEE Trans Aerosp Electron Syst, 2009, 45: 1241–1248

    Article  Google Scholar 

  11. 11

    Xia X-G, Wang G Y, Chen V C. Quantitative SNR analysis for ISAR imaging using joint time-frequency analysis-short time Fourier transform. IEEE Trans Aerosp Electron Syst, 2002, 38: 649–659

    Article  Google Scholar 

  12. 12

    Stankovic L, Ivanovic V, Petrovic Z. Unified approach to noise analysis in the Wigner distribution and spectrogram. Ann Telecommun, 1996, 11: 585–594

    Google Scholar 

  13. 13

    Stankovic L, Stankovic S. Wigner distribution of noisy signals. IEEE Trans Signal Process, 1993, 41: 956–960

    Article  Google Scholar 

  14. 14

    Ouyang X, Amin M G. Short-time Fourier transform receiver for nonstationary interference excision in direct sequence spread spectrum communications. IEEE Trans Signal Process, 2001, 49: 851–863

    Article  Google Scholar 

  15. 15

    Song J, Niu Z Y, Zhang J Y. OFD-LFM signal design and performance analysis for distributed aperture fully coherent radar. Sci China Inf Sci, 2015, 45: 968–984

    Google Scholar 

  16. 16

    Xia X-G, Chen V C. A quantitative SNR analysis for the pseudo Wigner-Ville distribution. IEEE Trans Signal Process, 1999, 47: 2891–2894

    Article  Google Scholar 

  17. 17

    Li X M, Bi G, Stankovic S, et al. Local polynomial Fourier transform: a review on recent developments and applications. Signal Process, 2011, 91: 1370–1393

    Article  Google Scholar 

  18. 18

    Wu Y, Li B Z, Cheng Q Y. A quantitative SNR analysis of LFM signals in the linear canonical transform domain with Gaussian windows. In: Proceedings of IEEE International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shengyang, 2013. 1426–1430

    Google Scholar 

  19. 19

    Li Y, Liu K, Tao R, et al. Adaptive viterbi-based range-instantaneous Doppler algorithm for ISAR imaging of ship target at sea. IEEE J Ocean Eng, 2015, 40: 417–425

    Article  Google Scholar 

  20. 20

    O’Shea P. A fast algorithm for estimating the parameters of a quadratic FM signal. IEEE Trans Signal Process, 2004, 52: 385–393

    MathSciNet  Article  Google Scholar 

  21. 21

    Bai X, Tao R, Wang Z, et al. ISAR imaging of a ship target based on parameter estimation of multicomponent quadratic frequency-modulated signals. IEEE Trans Geosci Remote Sens, 2014, 52: 1418–1429

    Article  Google Scholar 

  22. 22

    Wang Y, Zhao B. Inverse synthetic aperture radar imaging of nonuniformly rotating target based on the parameters estimation of multicomponent quadratic frequency-modulated signals. IEEE Sens J, 2015, 15: 4053–4061

    Article  Google Scholar 

  23. 23

    Katkovnik V. Discrete-time local polynomial approximation of the instantaneous frequency. IEEE Trans Signal Process, 1998, 46: 2626–2637

    MathSciNet  Article  Google Scholar 

  24. 24

    Djurović I, Thayaparan T, Stanković L. Adaptive local polynomial Fourier transform in ISAR. EURASIP J Adv Signal Process, 2006, 2006: 36093

    Article  Google Scholar 

  25. 25

    Katkovnik V, Gershman A B. A local polynomial approximation based beamforming for source localization and tracking in nonstationary environments. IEEE Signal Process Lett, 2000, 7: 3–5

    Article  Google Scholar 

  26. 26

    Guo Y, Li B Z. Blind image watermarking method based on linear canonical wavelet transform and QR decomposition. IET Image Process, 2016, 10: 773–786

    Article  Google Scholar 

  27. 27

    Xu T Z, Li B Z. Linear Canonical Transform and Its Application. Beijing: Science Press, 2013

    Google Scholar 

  28. 28

    Bu H X, Bai X, Tao R. Compressed sensing SAR imaging based on sparse representation in fractional Fourier domain. Sci China Inf Sci, 2012, 55: 1789–1800

    MathSciNet  Article  Google Scholar 

  29. 29

    Liu F, Xu H F, Tao R, et al. Research on resolution between multi-component LFM signals in the fractional Fourier domain. Sci China Inf Sci, 2012, 55: 1301–1312

    MathSciNet  Article  Google Scholar 

  30. 30

    Wei D Y, Li Y M. Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transform domain. IEEE Trans Signal Process, 2016, 64: 4861–4874

    MathSciNet  Article  Google Scholar 

  31. 31

    Feng Q, Li B Z. Convolution and correlation theorems for the two-dimensional linear canonical transform and its applications. IET Signal Process, 2016, 10: 125–132

    Article  Google Scholar 

  32. 32

    Shi J, Liu X P, He L, et al. Sampling and reconstruction in arbitrary measurement and approximation spaces associated with linear canonical transform. IEEE Trans Signal Process, 2016, 64: 6379–6391

    MathSciNet  Article  Google Scholar 

  33. 33

    Zhang Z C. Tighter uncertainty principles for linear canonical transform in terms of matrix decomposition. Digital Signal Process, 2017, 69: 70–85

    Article  Google Scholar 

  34. 34

    Wei D Y, Li Y M. The dual extensions of sampling and series expansion theorems for the linear canonical transform. Optik -Int J Light Electron Opt, 2015, 126: 5163–5167

    Article  Google Scholar 

  35. 35

    Kou K I, Xu R H. Windowed linear canonical transform and its applications. Signal Process, 2012, 92: 179–188

    Article  Google Scholar 

  36. 36

    Kou K I, Zhang R H, Zhang Y H. Paley-Wiener theorems and uncertainty principles for the windowed linear canonical transform. Math Method Appl Sci, 2012, 35: 2212–2132

    MathSciNet  Article  Google Scholar 

  37. 37

    Tao R, Li Y L, Wang Y. Short-time fractional Fourier transform and its applications. IEEE Trans Signal Process, 2010, 58: 2568–2580

    MathSciNet  Article  Google Scholar 

  38. 38

    Yin Q, Shen L, Lu M, et al. Selection of optimal window length using STFT for quantitative SNR analysis of LFM signal. J Syst Eng Electron, 2013, 24: 26–35

    Article  Google Scholar 

  39. 39

    Varadarajan V S. Some problems involving Airy functions. Commun Stoch Anal, 2012, 1: 65–68

    MathSciNet  MATH  Google Scholar 

  40. 40

    Popescu S A. Mathematical analysis II integral calculus. https://doi.org/civile.utcb.ro/cmat/cursrt/ma2e.pdf

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61671063), and also by Foundation for Innovative Research Groups of National Natural Science Foundation of China (Grant No. 61421001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing-Zhao Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, YN., Li, BZ., Goel, N. et al. Quantitative SNR analysis of QFM signals in the LPFT domain with Gaussian windows. Sci. China Inf. Sci. 62, 22302 (2019). https://doi.org/10.1007/s11432-017-9322-2

Download citation

Keywords

  • SNR analysis
  • quadratic frequency modulated signal
  • local polynomial Fourier transform
  • linear canonical transform
  • time frequency representations