On strong structural controllability and observability of linear time-varying systems: a constructive method


In this paper, we consider the controllability and observability of generalized linear time-varying (LTV) systems whose coefficients are not exactly known. All that is known about these systems is the placement of non-zero entries in their coefficient matrices (A,B). We provide the characterizations in order to judge whether the placements can guarantee the controllability/observability of such LTV systems, regardless of the exact value of each non-zero coefficient. We also present a direct and efficient algorithm with an associated time cost of O(n+m+v) to verify the conditions of our characterizations, where n and m denote the number of columns of A and B, respectively, and v is number of non-zero entries in (A,B).

This is a preview of subscription content, access via your institution.


  1. 1

    Kalman R E, Ho Y C, Narenda K S. Controllability of linear dynamical systems. Contrib Diff Eqs, 1963, 1: 189–213

    MathSciNet  Google Scholar 

  2. 2

    Rosenbrock H H. State-Space and Multivariable Theory. New York: Wiley, 1970

    Google Scholar 

  3. 3

    Hautus M L J. Controllability and observability conditions of linear autonomous systems. Nederl Akad Wet Proc Ser A, 1969, 72: 443–448

    MathSciNet  MATH  Google Scholar 

  4. 4

    Lin C T. Structural controllability. IEEE Trans Automat Contr, 1974, 19: 201–208

    MathSciNet  Article  Google Scholar 

  5. 5

    Shields R W, Pearson J B. Structural controllability of multiinput linear systems. IEEE Trans Automat Contr, 1976, 21: 203–212

    MathSciNet  Article  Google Scholar 

  6. 6

    Mayeda H. On structural controllability theorem. IEEE Trans Automat Contr, 1981, 26: 795–798

    MathSciNet  Article  Google Scholar 

  7. 7

    Wang L, Jiang F C, Xie G M, et al. Controllability of multi-agent systems based on agreement protocols. Sci China Ser F-Inf Sci, 2009, 52: 2074–2088

    MathSciNet  Article  Google Scholar 

  8. 8

    Guan Y Q, Wang L. Structural controllability of multi-agent systems with absolute protocol under fixed and switching topologies. Sci China Inf Sci, 2017, 60: 092203

    MathSciNet  Article  Google Scholar 

  9. 9

    Liu Y Y, Slotine J J, Barabási A L. Controllability of complex networks. Nature, 2011, 473: 167–173

    Article  Google Scholar 

  10. 10

    Mu J B, Li S Y, Wu J. On the structural controllability of distributed systems with local structure changes. Sci China Inf Sci, 2018, 61: 052201

    MathSciNet  Article  Google Scholar 

  11. 11

    Mayeda H, Yamada T. Strong structural controllability. SIAM J Control Opt, 1979, 17: 123–138

    MathSciNet  Article  Google Scholar 

  12. 12

    Hartung C, Reissig G, Svaricek F. Characterization of strong structural controllability of uncertain linear time-varying discrete-time systems. In: Proceedings of the 51st IEEE Conference on Decision and Control, Maui, 2012. 2189–2194

    Google Scholar 

  13. 13

    Hartung C, Reissig G, Svaricek F. Sufficient conditions for strong structural controllability of uncertain linear time-varying systems. In: Proceedings of American Control Conference, Washington, 2013. 5895–5900

    Google Scholar 

  14. 14

    Hartung C, Reissig G, Svaricek F. Necessary conditions for structural and strong structural controllability of linear time-varying systems. In: Proceedings of European Control Conference, Zurich, 2013. 1335–1340

    Google Scholar 

  15. 15

    Reissig G, Hartung C, Svaricek F. Strong structural controllability and observability of linear time-varying systems. IEEE Trans Automat Contr, 2014, 59: 3087–3092

    MathSciNet  Article  Google Scholar 

  16. 16

    Rugh W J. Linear System Theory. 2nd ed. Englewood Cliffs: Prentice Hall, 1996

    Google Scholar 

  17. 17

    Kalman R E. On the general theory of control systems. IEEE Trans Automat Contr, 1959, 4: 481–492

    Google Scholar 

  18. 18

    Sontag E D. Mathematical Control Theory. 2nd ed. New York: Springer, 1991

    Google Scholar 

  19. 19

    Liu X, Lin H, Chen B M. Graph-theoretic characterisations of structural controllability for multi-agent system with switching topology. Int J Control, 2013, 86: 222–231

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61233004, 61590924, 61521063).

Author information



Corresponding author

Correspondence to Shaoyuan Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Mu, J. & Wang, Y. On strong structural controllability and observability of linear time-varying systems: a constructive method. Sci. China Inf. Sci. 62, 12205 (2019). https://doi.org/10.1007/s11432-017-9311-x

Download citation


  • linear time-varying (LTV) systems
  • strong structural properties
  • controllability
  • observability
  • duality