Hilger-type impulsive differential inequality and its application to impulsive synchronization of delayed complex networks on time scales

This is a preview of subscription content, access via your institution.

References

  1. 1

    Pecora L M, Carroll T L. Synchronization in chaotic system. Phys Rev Lett, 1990, 64: 821–824

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Chen W H, Lu X M, Zheng W X. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks. IEEE Trans Neural Netw Learn Syst, 2015, 26: 734–748

    MathSciNet  Article  Google Scholar 

  3. 3

    Zhou J, Wu Q J, Xiang L. Pinning complex delayed dynamical networks by a single impulsive controller. IEEE Trans Circ Syst I: Reg Papers, 2011, 58: 2882–2893

    MathSciNet  Google Scholar 

  4. 4

    Lu J Q, Ho DWC, Cao J D. A unified synchronization criterion for impulsive dynamical networks. Automatica, 2010, 46: 1215–1221

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Guan Z H, Liu Z W, Feng G, et al. Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Trans Circ Syst I: Reg Papers, 2010, 57: 2182–2195

    MathSciNet  Google Scholar 

  6. 6

    Liu Y R, Wang Z D, Liang J L, et al. Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans Syst Man Cybern B, 2008, 38: 1314–1325

    Article  Google Scholar 

  7. 7

    Adivar M, Bohner E A. Halanay type inequalities on time scales with applications. Nonlinear Anal: Theo Meth Appl, 2011, 74: 7519–7531

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Bohner M, Peterson A. Dynamic Equations on Time Scales — An Introduction With Applications. Boston: Birkhäuser, 2003

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61573005, 11361010, 61573096, 61272530).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenkun Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Cao, J. & Raffoul, Y.N. Hilger-type impulsive differential inequality and its application to impulsive synchronization of delayed complex networks on time scales. Sci. China Inf. Sci. 61, 78201 (2018). https://doi.org/10.1007/s11432-017-9304-7

Download citation