High-rate and high-capacity measurement-device-independent quantum key distribution with Fibonacci matrix coding in free space

Abstract

This paper proposes a high-rate and high-capacity measurement-device-independent quantum key distribution (MDI-QKD) protocol with Fibonacci-valued and Lucas-valued orbital angular momentum (OAM) entangled states in free space. In the existing MDI-OAM-QKD protocols, the main encoding algorithm handles encoded numbers in a bit-by-bit manner. To design a fast encoding algorithm, we introduce a Fibonacci matrix coding algorithm, by which, encoded numbers are separated into segments longer than one bit. By doing so, when compared to the existing MDI-OAM-QKD protocols, the new protocol can effectively increase the key rate and the coding capacity. This is because Fibonacci sequences are used in preparing OAM entangled states, reducing the misattribution errors (which slow down the execution cycle of the entire QKD) in QKD protocols. Moreover, our protocol keeps the data blocks as small as possible, so as to have more blocks in a given time interval. Most importantly, our proposed protocol can distill multiple Fibonacci key matrices from the same block of data, thus reducing the statistical fluctuations in the sample and increasing the final QKD rate. Last but not the least, the sender and the receiver can omit classical information exchange and bit flipping in the secure key distillation stage.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Lai H, Luo M X, Pieprzyk J, et al. An efficient quantum blind digital signature scheme. Sci China Inf Sci, 2017, 60: 082501

    Article  Google Scholar 

  2. 2

    Spedalieri F M. Quantum key distribution without reference frame alignment: exploiting photon orbital angular momentum. Opt Commun, 2006, 260: 340–346

    Article  Google Scholar 

  3. 3

    Li J-L, Wang C. Six-state quantum key distribution using photons with orbital angular momentum. Chin Phys Lett, 2010, 27: 110303

    MathSciNet  Article  Google Scholar 

  4. 4

    Zhang C M, Zhu J R, Wang Q. Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys Rev A, 2017, 95: 032309

    Article  Google Scholar 

  5. 5

    Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 1992, 45: 8185–8189

    Article  Google Scholar 

  6. 6

    Simon D S, Lawrence N, Trevino J, et al. High-capacity quantum Fibonacci coding for key distribution. Phys Rev A, 2013, 87: 032312

    Article  Google Scholar 

  7. 7

    Krenn M, MalikM, ErhardM, et al. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes. Phil Trans R Soc A, 2017, 375: 20150442

    MathSciNet  Article  Google Scholar 

  8. 8

    Bechmann-Pasquinucci H, Peres A. Quantum cryptography with 3-state systems. Phys Rev Lett, 2000, 85: 3313–3316

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems. Phys Rev Lett, 2002, 88: 127902

    Article  Google Scholar 

  10. 10

    Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108: 130503

    Article  Google Scholar 

  11. 11

    Braunstein S L, Pirandola S. Side-channel-free quantum key distribution. Phys Rev Lett, 2012, 108: 130502

    Article  Google Scholar 

  12. 12

    Ma X, Fung C H F, Razavi M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys Rev A, 2012, 86: 052305

    Article  Google Scholar 

  13. 13

    Tamaki K, Lo H K, Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys Rev A, 2012, 85: 042307

    Article  Google Scholar 

  14. 14

    Zhang Y C, Li Z, Yu S, et al. Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys Rev A, 2014, 90: 052325

    Article  Google Scholar 

  15. 15

    Tang Y-L, Yin H-L, Chen S-J, et al. Field test of measurement-device-independent quantum key distribution. IEEE J Sel Top Quantum Electron, 2015, 21: 116–122

    Article  Google Scholar 

  16. 16

    Ma X, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution. Phys Rev A, 2012, 86: 062319

    Article  Google Scholar 

  17. 17

    Lai H, Luo M X, Zhan C, et al. An improved coding method of quantum key distribution protocols based on Fibonaccivalued OAM entangled states. Phys Lett A, 2017, 381: 2922–2926

    Article  Google Scholar 

  18. 18

    Zhao S M, Gong L Y, Li Y Q, et al. A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement. Chin Phys Lett, 2013, 30: 060305

    Article  Google Scholar 

  19. 19

    Mafu M, Dudley A, Goyal S, et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A, 2013, 88: 032305

    Article  Google Scholar 

  20. 20

    Wang L, Zhao S M, Gong L Y, et al. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin Phys B, 2015, 24: 120307

    Article  Google Scholar 

  21. 21

    Chen D, Zhao S H, Shi L, et al. Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys Rev A, 2016, 93: 032320

    Article  Google Scholar 

  22. 22

    Da Silva T F, Vitoreti D, Xavier G B, et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys Rev A, 2013, 88: 052303

    Article  Google Scholar 

  23. 23

    Tang Z, Liao Z, Xu F, et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys Rev Lett, 2014, 112: 190503

    Article  Google Scholar 

  24. 24

    Pirandola S, Ottaviani C, Spedalieri G, et al. High-rate measurement-device-independent quantum cryptography. Nat Photon, 2015, 9: 397–402

    Article  Google Scholar 

  25. 25

    Vajda S. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. New York: Dover Publications, 2007

    Google Scholar 

  26. 26

    Esmaeili M, Moosavi M, Gulliver T A. A new class of Fibonacci sequence based error correcting codes. Cryptogr Commun, 2017, 9: 379–396

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Yan X, Zhang P F, Zhang J H, et al. Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state. 2017, 26: 064202

    Google Scholar 

  28. 28

    Fu S, Gao C. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon Res, 2016, 4: 1–4

    Article  Google Scholar 

  29. 29

    Jurado-Navas A, Tatarczak A, Lu X, et al. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes. Opt Express, 2015, 23: 33721–33732

    Article  Google Scholar 

  30. 30

    Malik M, O’Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express, 2012, 20: 13195–13200

    Article  Google Scholar 

  31. 31

    Ren Y, Huang H, Xie G, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Opt Lett, 2013, 38: 4062–4065

    Article  Google Scholar 

  32. 32

    Rodenburg B, Lavery M P J, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Opt Lett, 2012, 37: 3735–3737

    Article  Google Scholar 

  33. 33

    Huttner B, Imoto N, Gisin N, et al. Quantum cryptography with coherent states. Phys Rev A, 1995, 51: 1863–1869

    Article  Google Scholar 

  34. 34

    Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Lo H K, Ma X, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  Google Scholar 

  36. 36

    Fürst M, Weier H, Schmitt-Manderbach T, et al. Free-space quantum key distribution over 144 km. In: Proceedigns of Society of Photo-Optical Instrumentation Engineers (SPIE), Stockholm, 2006. 63990G

    Google Scholar 

  37. 37

    Jiang C, Yu Z W, Wang X B. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation. Phys Rev A, 2017, 95: 032325

    Article  Google Scholar 

Download references

Acknowledgements

Hong LAI was supported by National Natural Science Foundation of China (Grant No. 61702427), Doctoral Program of Higher Education (Grant No. SWU115091), and financial support in part by 1000-Plan of Chongqing by Southwest University (Grant No. SWU116007). Mingxing LUO was supported by National Natural Science Foundation of China (Grant No. 61772437) and Sichuan Youth Science & Technique Foundation (Grant No. 2017JQ0048). Jun ZHANG was supported by National Natural Science Foundation of China (Grant No. 61401371). Josef PIEPRZYK has been supported by National Science Centre, Poland (Grant No. UMO-2014/15/B/ST6/05130).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hong Lai or Mehmet A. Orgun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Luo, M., Pieprzyk, J. et al. High-rate and high-capacity measurement-device-independent quantum key distribution with Fibonacci matrix coding in free space. Sci. China Inf. Sci. 61, 062501 (2018). https://doi.org/10.1007/s11432-017-9291-6

Download citation

Keywords

  • measurement-device-independent quantum key distribution
  • Fibonacci-matrix coding
  • free space
  • orbital angular momentum
  • bit flipping
  • misattribution errors