Advertisement

A 70 Gbps NRZ optical link based on 850 nm band-limited VCSEL for data-center intra-connects

  • Zhongwei Tan
  • Chuanchuan Yang
  • Yixiao Zhu
  • Zhaopeng Xu
  • Kaiheng Zou
  • Fan Zhang
  • Ziyu Wang
Research Paper
  • 76 Downloads

Abstract

Short-reach optical interconnects among servers in data centers have attracted extensive studies recently. High capacity and low cost are two key problems for optical link. In this paper, we demonstrate a band-limited 850 nm vertical cavity surface emitting laser (VCSEL) based optical transmission system. The optical link realizes 70 Gb/s (65 Gb/s net rate) non-return-to-zero (NRZ) signal transmission over 11 m and 20 m OM4 multimode fiber (MMF), with the help of equalization for time domain interference elimination. The utilized VCSEL has a bandwidth of only 18 GHz, meeting the principle of low cost. The data baud rate in this paper reaches the highest value for an 18-GHz-class 850 nm VCSEL based optical link, to our best knowledge.

Keywords

850 nm VCSEL band-limited 70 Gb/s NRZ OM4 MMF equalization 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61275005, 61475004).

References

  1. 1.
    Zhan Y, Xu D, Yu H. Pricing the spare bandwidth: towards maximizing data center’s profit. Sci China Inf Sci, 2016, 59: 102303CrossRefGoogle Scholar
  2. 2.
    Larsson A, Gustavsson J S, Westbergh P, et al. High-speed VCSELs for datacom. In: Proceedings of the 42nd European Conference and Exhibition on Optical Communication, Düsseldorf, 2016. 977–979Google Scholar
  3. 3.
    Kuchta D M. High speed VCSEL-based links for use in data centers and high performance computing. Optoelectron. In: Proceedings of the 21st Optoelectronics and Communications Conference, Niigata, 2016Google Scholar
  4. 4.
    Szczerba K, Westbergh P, Karlsson M, et al. 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL. J Lightwave Technol, 2015, 33: 1395–1401CrossRefGoogle Scholar
  5. 5.
    Szczerba K, Westbergh P, Karlsson M, et al. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL. Electron Lett, 2013, 49: 953–955CrossRefGoogle Scholar
  6. 6.
    Szczerba K, Lengyel T, Karlsson M, et al. 94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization. IEEE Photonics Technol Lett, 2016, 28: 2519–2521CrossRefGoogle Scholar
  7. 7.
    Karinou F, Stojanovic N, Prodaniuc C, et al. 112 Gb/s PAM-4 optical signal transmission over 100-m OM4 multimode fiber for high-capacity data-center interconnects. In: Proceedings of the 42nd European Conference and Exhibition on Optical Communication, Düsseldorf, 2016. 124–126Google Scholar
  8. 8.
    Ling W A, Lyubomirsky I, Rodes R, et al. Single-channel 50 G and 100 G discrete multitone transmission with 25 G VCSEL technology. J Lightwave Technol, 2015, 33: 761–767CrossRefGoogle Scholar
  9. 9.
    Puerta R R, Agustin M, Chorchos L, et al. Effective 100 Gb/s IM/DD 850 nm multi- and single-mode VCSEL transmission through OM4 MMF. J Lightwave Technol, 2017, 35: 423–429CrossRefGoogle Scholar
  10. 10.
    Kuchta D M, Rylyakov A V, Doany F E, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photonics Technol Lett, 2015, 27: 577–580CrossRefGoogle Scholar
  11. 11.
    Zuo T, Zhang L, Zhou J, et al. Single lane 150-Gb/s, 100-Gb/s and 70-Gb/s 4-PAM transmission over 100-m, 300-m and 500-m MMF using 25-G class 850nm VCSEL. In: Proceedings of the 42nd European Conference and Exhibition on Optical Communication, Düsseldorf, 2016. 974–976Google Scholar
  12. 12.
    Kuchta D M. Higher speed VCSEL links using equalization. In: Proceedings of the 42nd European Conference and Exhibition on Optical Communication, Düsseldorf, 2016. 178–180Google Scholar
  13. 13.
    Tan Z, Yang C, Zhu Y, et al. High speed band-limited 850nm VCSEL link based on time-domain interference elimination. IEEE Photonics Technol Lett, 2017, 29: 751–754CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhongwei Tan
    • 1
  • Chuanchuan Yang
    • 1
  • Yixiao Zhu
    • 1
  • Zhaopeng Xu
    • 1
  • Kaiheng Zou
    • 1
  • Fan Zhang
    • 1
  • Ziyu Wang
    • 1
  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina

Personalised recommendations