Nonsingularity of Grain-like cascade FSRs via semi-tensor product

  • Jianquan Lu
  • Meilin Li
  • Yang Liu
  • Daniel W.C. Ho
  • Jürgen. Kurths
Research Paper Special Focus on Analysis and Control of Finite-Valued Network Systems
  • 26 Downloads

Abstract

In this paper, Grain-like cascade feedback shift registers (FSRs) are regarded as two Boolean networks (BNs), and the semi-tensor product (STP) of the matrices is used to convert the Grain-like cascade FSRs into an equivalent linear equation. Based on the STP, a novel method is proposed herein to investigate the nonsingularity of Grain-like cascade FSRs. First, we investigate the property of the state transition matrix of Grain-like cascade FSRs. We then propose their sufficient and necessary nonsingularity condition. Next, we regard the Grain-like cascade FSRs as Boolean control networks (BCNs) and further provide a sufficient condition of their nonsingularity. Finally, two examples are provided to illustrate the results obtained in this paper.

Keywords

Grain-like cascade FSRs Boolean control networks Boolean networks semi-tensor product nonsingularity 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61573102, 11671361), Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170019), Jiangsu Provincial Key Laboratory of Networked Collective Intelligence (Grant No. BM2017002), China Postdoctoral Science Foundation (Grant Nos. 2014M560377, 2015T80483), Jiangsu Province Six Talent Peaks Project (Grant No. 2015-ZNDW-002), and Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Goresky M, Klapper A. Algebraic Shift Register Sequences. Cambridge: Cambridge University Press, 2012MATHGoogle Scholar
  2. 2.
    Golomb S W. Shift Register Sequences. Walnut Creek: Aegean Park Press, 1982MATHGoogle Scholar
  3. 3.
    Goresky M, Klapper A. Pseudonoise sequences based on algebraic feedback shift registers. IEEE Trans Inf Theory, 2006, 52: 1649–1662CrossRefMATHGoogle Scholar
  4. 4.
    Li C Y, Zeng X Y, Helleseth T, et al. The properties of a class of linear FSRs and their applications to the construction of nonlinear FSRs. IEEE Trans Inf Theory, 2014, 60: 3052–3061MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Massey J. Shift-register synthesis and BCH decoding. IEEE Trans Inf Theory, 1969, 15: 122–127MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Meier W, Staffelbach O. Fast correlation attacks on certain stream ciphers. J Cryptology, 1989, 1: 159–176MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hell M, Johansson T, Meier M. Grain: a stream cipher for constrained environments. Int J Wirel Mobile Comput, 2007, 2: 86–93CrossRefGoogle Scholar
  8. 8.
    Gammel B M, Gottfert R, Kniffler O. An NLFSR-based stream cipher. In: Proceedings of IEEE International Symposium on Circuits and Systems, Island of Kos, 2006Google Scholar
  9. 9.
    Chen K, Henricksen M, Millan W, et al. Dragon: a fast word based stream cipher. In: Proceedings of International Conference on Information Security and Cryptology. Berlin: Springer, 2004. 33–50Google Scholar
  10. 10.
    Gammel B, Göttfert R, Kniffler O. Achterbahn-128/80: design and analysis. ECRYPT Network of Excellence–SASC Workshop Record, 2007. https://www.cosic.esat.kuleuven.be/ecrypt/stream/papersdir/2007/020.pdfGoogle Scholar
  11. 11.
    Courtois N T, Meier W. Algebraic attacks on stream ciphers with linear feedback. In: Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2003. 345–359Google Scholar
  12. 12.
    Robshaw M, Matsumoto M, Saito M, et al. New Stream Cipher Designs: the eSTREAM Finalists. Berlin: Springer, 2008CrossRefMATHGoogle Scholar
  13. 13.
    Hell M, Johansson T, Maximov A. The grain family of stream ciphers. Lect Notes Comput Sci, 2008, 4986: 179–190CrossRefGoogle Scholar
  14. 14.
    Babbage S, Dodd M. The MICKEY Stream Ciphers. Berlin: Springer, 2008CrossRefGoogle Scholar
  15. 15.
    Maximov A. Cryptanalysis of the “Grain” family of stream ciphers. In: Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, Taipei, 2006. 283–288Google Scholar
  16. 16.
    Berbain C, Gilbert H, Joux A. Algebraic and correlation attacks against linearly filtered non linear feedback shift registers. In: Proceedings of the 15th International Workshop on Selected Areas in Cryptography, Sackville, 2008. 184–198Google Scholar
  17. 17.
    Hu H G, Gong G. Periods on two kinds of nonlinear feedback shift registers with time varying feedback functions. Int J Found Comput Sci, 2011, 22: 1317–1329MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks. Berlin: Springer, 2011CrossRefMATHGoogle Scholar
  19. 19.
    Li H T, Zhao G D, Meng M, et al. A survey on applications of semi-tensor product method in engineering. Sci China Inf Sci, 2018, 61: 010202CrossRefGoogle Scholar
  20. 20.
    Lu J Q, Li H T, Liu Y, et al. Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl, 2017, 11: 2040–2047CrossRefGoogle Scholar
  21. 21.
    Lu J Q, Zhong J, Ho D W C, et al. On controllability of delayed Boolean control networks. SIAM J Control Optim, 2016, 54: 475–494MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Liu Y, Chen H W, Wu B. Controllability of Boolean control networks with impulsive effects and forbidden states. Math Method Appl Sci, 2014, 37: 1–9CrossRefMATHGoogle Scholar
  23. 23.
    Zhu Q X, Liu Y, Lu J Q, et al. Observability of Boolean control networks. Sci China Inf Sci, 2018, 61: 092201. doi: 10.1007/s11432-017-9135-4MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lu J Q, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE Trans Autom Control, 2016, 61: 1658–1663MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Zhong J, Lu J Q, Liu Y, et al. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2288–2294CrossRefGoogle Scholar
  26. 26.
    Liu Y, Li B W, Lu J Q, et al. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Control, 2017. doi:10.1109/TAC.2017.2715181Google Scholar
  27. 27.
    Liu Y, Sun L J, Lu J Q, et al. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1991–1996MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li F F, Sun J T. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47: 603–607MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Laschov D, Margaliot M. Controllability of Boolean control networks via the perron-frobenius theory. Automatica, 2012, 48: 1218–1223MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Li H T, Wang Y Z, Xie L H. Output tracking control of Boolean control networks via state feedback: constant reference signal case. Automatica, 2015, 59: 54–59MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Cheng D Z, Qi H S, Li Z Q, et al. Stability and stabilization of Boolean networks. Int J Robust Nonlinear Control, 2011, 21: 134–156MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Li H T, Wang Y Z. Controllability analysis and control design for switched Boolean networks with state and input constraints. SIAM J Control Optim, 2015, 53: 2955–2979MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zhong J, Lu J Q, Huang T W, et al. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybern, 2017, 47: 3482–3493CrossRefGoogle Scholar
  35. 35.
    Guo P L, Wang Y Z, Li H T. A semi-tensor product approach to finding Nash equilibria for static games. In: Proceedings of the 32nd Chinese Control Conference (CCC), Xi’an, 2013. 107–112Google Scholar
  36. 36.
    Li H T, Xie L H, Wang Y Z. On robust control invariance of Boolean control networks. Automatica, 2016, 68: 392–396MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zhong J H, Lin D D. A new linearization method for nonlinear feedback shift registers. J Comput Syst Sci, 2014, 81: 783–796MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Zhong J H, Lin D D. Stability of nonlinear feedback shift registers. Sci China Inf Sci, 2016, 59: 012204Google Scholar
  39. 39.
    Zhong J H, Lin D D. Driven stability of nonlinear feedback shift registers with inputs. IEEE Trans Commun, 2016, 64: 2274–2284CrossRefGoogle Scholar
  40. 40.
    Zhong J, Ho D W C, Lu J Q, et al. Global robust stability and stabilization of Boolean network with disturbances. Automatica, 2017, 84: 142–148MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Liu Y, Cao J D, Sun L J, et al. Sampled-data state feedback stabilization of Boolean control networks. Neural Comput, 2016, 28: 778–799CrossRefGoogle Scholar
  42. 42.
    Wu H J, Huang T, Nguyen P H, et al. Differential attacks against stream cipher ZUC. In: Proceedings of the 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, 2012. 262–277Google Scholar
  43. 43.
    Lai X J. Condition for the nonsingularity of a feedback shift-register over a general finite field (corresp.). IEEE Trans Inf Theory, 1987, 33: 747–749CrossRefMATHGoogle Scholar
  44. 44.
    Wang Q Y, Jin C H. Criteria for nonsingularity of Grain-like cascade feedback shift register (in Chinese). Comput Eng, 2014, 40: 519–523Google Scholar
  45. 45.
    Girard J Y. Linear logic. Theor Comput Sci, 1987, 50: 1–101MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Liu Z B, Wang Y Z, Cheng D Z. Nonsingularity of feedback shift registers. Automatica, 2015, 55: 247–253MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jianquan Lu
    • 1
    • 2
  • Meilin Li
    • 1
  • Yang Liu
    • 2
  • Daniel W.C. Ho
    • 3
  • Jürgen. Kurths
    • 4
  1. 1.School of MathematicsSoutheast UniversityNanjingChina
  2. 2.College of Mathematics, Physics and Information EngineeringZhejiang Normal UniversityJinhuaChina
  3. 3.Department of MathematicsHong KongChina
  4. 4.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations